
1

Geometrically Constrained Trajectory Optimization
for Multicopters

Zhepei Wang, Xin Zhou, Chao Xu, and Fei Gao

Abstract—In this article, we present an optimization-based
framework for multicopter trajectory planning subject to ge-
ometrical configuration constraints and user-defined dynamic
constraints. The basis of the framework is a novel trajectory rep-
resentation built upon our novel optimality conditions for uncon-
strained control effort minimization. We design linear-complexity
operations on this representation to conduct spatial-temporal
deformation under various planning requirements. Smooth maps
are utilized to exactly eliminate geometrical constraints in a
lightweight fashion. A variety of state-input constraints are
supported by the decoupling of dense constraint evaluation
from sparse parameterization, and backward differentiation of
flatness map. As a result, this framework transforms a generally
constrained multicopter planning problem into an unconstrained
optimization that can be solved reliably and efficiently. Our
framework bridges the gaps among solution quality, planning
efficiency, and constraint fidelity for a multicopter with limited
resources and maneuvering capability. Its generality and robust-
ness are both demonstrated by applications to different flight
tasks. Extensive simulations and benchmarks are also conducted
to show its capability of generating high-quality solutions while
retaining the computation speed against other specialized meth-
ods by orders of magnitude. The source code of our framework
is available at: https://github.com/ZJU-FAST-Lab/GCOPTER.

Index Terms—Aerial Systems: Applications, Motion and Path
Planning, Autonomous Vehicle Navigation, Collision Avoidance.

I. INTRODUCTION

MULTICOPTERS rely on robust and efficient trajectory
planning for safe yet agile autonomous navigation in

complex environments [1]–[6]. For robotics, precisely incor-
porating dynamics, smoothness, and safety is essential to
generate high-quality motions. Moreover, lightweight robots,
such as multicopters under SWaP (size, weight, and power)
constraints, put further hard requirements on the real-time
computing using limited onboard resources. Despite that vari-
ous successful tools in general-purpose kinodynamic planning
or optimal control have been presented, few of them guarantee
efficient online planning while also considering general con-
straints on dynamics for multicopters. Consequently, existing
applications often use oversimplified requirements on trajec-
tories for better computation efficiency, thus limiting the full
exploitation of vehicle’s capability.

The high-performance planning mentioned above possesses
four major algorithmic challenges. First, ensuring safety often
involves frequent interactions with a large volume of highly

All authors are with the College of Control Science and Engineering,
Zhejiang University, Hangzhou, 310027, China, and also with the Huzhou
Institute of Zhejiang University, Huzhou, 313000, China. {wangzhepei,
iszhouxin, cxu, fgaoaa}@zju.edu.cn This work was sup-
ported by the National Natural Science Foundation of China under Grant
62003299 and Grant 62088101. (Corresponding authors: Fei Gao, Chao Xu.)

(a) High-speed flights in the garage. (b) SE(3) motions through windows.

(c) Global trajectory planning results. (d) SE(3) trajectory planning results.

Fig. 1. Experimental validation of our framework through extreme flights. The
left figures show long-distance high-speed flights in an underground garage. A
343.57m trajectory is computed in 0.29s. The right figures show aggressive
yet robust SE(3) maneuvers through narrow windows repeated for 12 times.
The flight speed and tilt angle in our experiments reach 12.0m/s and 90◦,
respectively. Details can be found in the attached multimedia.

discretized environment data. Second, the nonlinearity of vehi-
cle dynamics brings difficulties to directly enforcing physically
acceptable states and inputs when the multicopter is flying
at the limit of its capabilities. Third, high-quality motions
conventionally need fine discretization of the dynamic process,
where requirements for task resources tend to be unrealistic.
Fourth, methods that use sparse representation for trajectories
lack an effective way to optimize the temporal profile while
satisfying continuous-time constraints.

In this article, we overcome these challenges by designing a
lightweight and flexible optimization framework to meet user-
defined requirements based on a novel trajectory class.

As the theoretical foundation of our framework, we present
necessary and sufficient optimality conditions to multistage
control effort minimization for the concerned linear dynamics,
which are given for the first time to the best of our knowledge.
The conditions are easy to use in that the unique optimal solu-
tion can be directly constructed with linear complexity in both
time and space aspects. More importantly, the existence and
uniqueness of conditions further provide crucial information
on smoothness of the problem parameter sensitivity.

https://github.com/ZJU-FAST-Lab/GCOPTER

2

To ease computation burden without sacrificing trajectory
quality, it is essential to use sparse parameterization while
keeping the flexibility to suit multicopter dynamics. Therefore,
we design a novel trajectory class based on our optimality
conditions. Any element in this class is by default an uncon-
strained control effort minimizer, thus we name it as MINCO
(Minimum Control). MINCO differs from conventional splines
that majorly focus on the smoothness of the geometrical shape,
such as B-Splines and Bézier curves. Its sparse parameters
are designed to directly control both the spatial and temporal
profile of a trajectory, which are of equal importance for
dynamic feasibility. Besides, a spatial-temporal deformation
scheme is also designed such that MINCO can be optimized
under any user-defined objective.

Our framework utilizes the geometrical approximation of
low-dimensional free space based on results of sampling-based
or search-based global methods. The safety is ensured via
configuration constraints formed by the union of obstacle-
free convex primitives. Constraint elimination schemes are
proposed such that MINCO can be freely deformed through
unconstrained optimization. The schemes exactly eliminate
constraints that are directly defined on decision variables
without introducing extra local minima.

Reliable motion planning requires admissible states and in-
puts, while most existing flatness-based methods only support
differential constraints. To ensure high-fidelity feasibility, we
propose a systematic way to enforce user-defined state-input
constraints for our sparse parameterization without resorting
to a fine discretization of trajectories. We exploit the backward
differentiation of flatness map such that the constraint violation
can be reflected in their gradient w.r.t. sparse parameters.
Besides, a differentiable penalty functional is also proposed
to enforce general continuous-time constraints.

Our framework focuses on computationally efficient yet
high-quality trajectory planning for multicopters where there
are complex constraints for safety, critical limits on dynamics,
and task-specified requirements. To validate its effectiveness,
we conduct extensive benchmarks against various cutting-edge
multicopter trajectory planning methods. Results show that
our method exceeds existing methods for orders of magnitude
in efficiency, and retains comparable solution quality against
general-purpose optimal-control solvers. We also conduct ver-
satile simulations and extreme real-world flights to show the
practical performance of our approach.

The contributions of this article are as follows.
• Optimality conditions in a general form on multi-stage

control effort minimization are proposed with a proof of
both the necessity and sufficiency for the first time.

• A novel trajectory class is designed to meet user-defined
objectives while retaining local smoothness by spatial-
temporal deformation via linear-complexity operations.

• A flexible trajectory planning framework that leverages
both constraint elimination and constraint transcription is
proposed for multicopter systems with user-defined state-
input constraints.

• A set of simulations and experiments that validate our
method significantly outperforms state-of-the-art works
in efficiency, optimality, robustness, and generality.

II. RELATED WORK

Despite various planning approaches in existing literature,
there has yet to emerge a complete framework to accomplish
time-critical large-scale trajectory planning for multicopters
while incorporating user-defined continuous-time constraints
on state and control. Our framework bridges this gap by ex-
ploring and exploiting different capabilities from both optimal
control and motion planning.

A. Differentially Flat Multicopters

The concept of differential flatness has been introduced by
Fliess et al. [7] and drawn great attentions in robotics trajectory
planning [8]–[10]. The property makes it possible to recover
the full state and input of a flat system from finite derivatives
of its flat outputs. Mellinger and Kumar [11] validate the
flatness of quadcopters with aligned propellers, which takes the
thrust and three-dimensional torque as inputs. Watterson and
Kumar [12] use Hopf fibration to decompose the quadcopter
rotation, thus achieving the minimum singularity number in
flatness maps. Ferrin et al. [13] show the flatness of a
hexacopter whose inputs are desired orientation and thrust.
They utilize the flatness to compute the nominal state where
a Linear Quadratic Regulator (LQR) is applied. Faessler et
al. [14] further consider linear drags that produce extra linear
and angular accelerations. They show the flatness of parallel-
rotor multicopters subject to the drag effect. Moreover, Mu and
Chirarattananon [15] investigate underactuated multicopters
with tilted propellers. They prove that the flatness holds for a
wide range of tricopters, quadcopters, and hexacopters as long
as the input rank condition is satisfied.

The flatness of a multicopter, if holds, benefits trajectory
generation and tracking control in obtaining the reference state
and input without integrating differential equations. Literature
mentioned above uses flatness to avoid confronting system dy-
namics during planning. However, dynamics of a real physical
system are only valid for reasonable state and admissible input.
Although our framework also utilizes the flatness property, it
differs from previous works in that a general form of state-
input constraints is formally supported.

B. Sampling-Based Motion Planning

Sampling-based motion planners focus on global solutions
of problems by exploration and exploitation, where the com-
plexity mainly originates from the configuration space. The
Probabilistic Roadmap (PRM) [16] and the Rapidly-exploring
Random Tree (RRT) [17] are both probabilistically complete
since their probability of failure decays to zero exponentially
as the sample number goes to infinity [18]. Karaman and Fraz-
zoli [19] propose asymptotically optimal variants of PRM and
RRT, known as PRM* and RRT*, which ensure the conver-
gence to globally optimal solutions as the sample number goes
to infinity. There are also algorithms [20]–[22] that further
improve the efficiency or applicability of randomized motion
planning. Our method exploits sampling-based planners to
overcome the complexity from environments. It accomplishes
the optimization of a dynamically feasible trajectory that is

3

homotopic to a given low-dimensional collision-free path. It is
designed to flexibly incorporate system state-input constraints,
which is not the strength of sampling-based methods. In this
way, the complexity from both the environments and dynamics
are divided and conquered.

C. Optimization-Based Motion Planning

Optimization-based planners focus on local solutions by
using high-order information of the problems. They depend
on specific environment pre-processing methods such that the
obstacle information is encoded into the optimization.

Trajectory optimization has long been studied for general
systems in the control community [23]. Many general-purpose
methods are designed for high-quality solutions, such as the
collocation-based method GPOPS-II [24], and the shooting-
based one ACADO [25]. They transcribe the original problem
into a Nonlinear Programming (NLP) using a lot of equalities
and variables, then resort to well-established NLP solvers such
as SNOPT [26] or IPOPT [27]. However, trajectory planning
in robotics may impose hard-to-formulate constraints, non-
smoothness, and integer variables. Besides, general-purpose
methods often take a long computation time, making them in-
appropriate for time-critical tasks. For example, Bry et al. [28]
report that Direct Collocation (DC) with SNOPT takes several
minutes to optimize a 4.5m trajectory for a 12-state airplane
flying among cylindrical obstacles [29]. Therefore, specialized
methods are on calling to overcome these difficulties.

For differentially flat multicopters, motion planning can be
transformed into optimization of low-dimensional trajectories
of flat outputs. Mellinger and Kumar [11] use fixed-duration
splines to represent quadcopter trajectories. A Quadratic Pro-
gramming (QP) is formulated by the quadratic cost of snap
and linear constraints of safety. However, perturbation prob-
lems need to be solved in finite difference to estimate the
gradient for time allocation. Its actuator constraints are also
oversimplified. Bry et al. [28] propose a closed-form solution
for this QP without safety constraints. They heuristically add
waypoints from a collision-free path of RRT* to recompute
the solution until the safety is satisfied. This method is admit-
tedly efficient but cannot guarantee high-quality solutions in
obstacle-rich environments. Besides, it involves the inverse of
a matrix whose non-singularity is never discussed. Deits and
Tedrake [30] approximate the free space using polytopes. The
safety of each piece of trajectory is equivalent to a Sum-of-
Square (SOS) condition if it entirely lies inside a polytope.
They solve interval assignment using Mixed Integer Second
Order Conic Programming (MISOCP). It generates globally
optimal trajectories while the computation time is unaccept-
able. Gao et al. [31] also use the polyhedron-shaped free space
representation. They alternately optimize the geometrical and
temporal profile of a trajectory. The safety is enforced by
the convex-hull property of Bézier curves, and the dynamic
profile is optimized via Time-Optimal Path Parameterization
(TOPP) [32]. There are also variants that propose improve-
ments over the above methods. For example, Tordesillas et
al. [33] improve the efficiency of [30] by substituting SOS
conditions on polynomials with linear constraints on Bézier

curves at the cost of conservatism [34]. Sun et al. [35] avoid
integer variables by optimizing time allocation instead, where
the sensitivity of a bilevel optimization is exploited.

These specialized methods utilize the continuous-time tra-
jectory parameterization to avoid the computation burden from
the fine discretization. However, they do not support flexibly
optimizing its time allocation, decoupling temporal resolutions
of constraints from decision variable dimensions, or enforcing
high-fidelity constraints except for restrictions on derivative
norms. In this article, our framework supports all these features
by introducing unified techniques for a novel sparse parame-
terization. Moreover, the solution quality is comparable with
that of the general-purpose optimal-control solvers.

III. PRELIMINARIES

A. Differential Flatness

Fig. 2. Transform Ψu and Ψx of a flat system eliminate differential con-
straints (blue surface) from dynamics in the state-input space (left coordinate).
The original state-input constraint GD (red area) is also transformed into a
new constraint G (blue volume) in the flat-output space (right coordinate).

Consider a dynamical system of the following type

ẋ = f(x) + g(x)u, (1)

with f : Rn 7→ Rn, g : Rn 7→ Rn×m, state x ∈ Rn, and input
u ∈ Rm. The map g is assumed to have rank m. The system
is said to be differentially flat [7], if there exists a flat output
z ∈ Rm determined by x and finite derivatives of u, such that
x and u can both be parameterized by finite derivatives of z:

x = Ψx(z, ż, . . . , z(s−1)), (2)

u = Ψu(z, ż, . . . , z(s)), (3)

where Ψx : (Rm)s 7→ Rn and Ψu : (Rm)s+1 7→ Rm are both
induced by f and g. Intuitively, the state and control can be
determined from z without explicit integration of the system
dynamics (1).

Leveraging the flatness of a system, the trajectory generation
is convenient when there are only differential constraints in (1).
If we introduce a new control variable v = z(s) and denote
z[s−1] ∈ Rms as

z[s−1] = (zT, żT, . . . , z(s−1)T

)T, (4)

the input u = Ψu(z[s−1], v) then exactly linearizes the original
flat system into m decoupled chains of s-integrators. Let zi
denote the i-th entry in z, vi the i-th entry in v and z[s−1]

i =

(zi, żi, . . . , z
(s−1)
i)T. The i-th integrator chain is

ż
[s−1]
i =

(
0 Is−1

0 0T

)
z

[s−1]
i +

(
0
1

)
vi, (5)

4

where 0 and I are a zero matrix and an identity matrix with
appropriate sizes, respectively. Given an initial state and a goal
state, boundary values of each integrator chain (5) can be
algebraically computed. Thus any trajectory integrated from
these m integrator chains can be transformed into a feasible
trajectory [8] for the original flat system via (2) and (3).

For dynamics with a small m, the flatness maps Ψx and
Ψu further reduce the trajectory dimension and eliminate the
differential constraints (1), which is illustrated in Fig. 2. As a
side effect, nonlinearity coming from both Ψx and Ψu brings
additional difficulties in trajectory generation for z when there
are additional state-input constraints for (1). However, such
an effect is relieved if the flat-output space coincides with the
configuration space of the relevant planning problem.

B. Direct Optimization in Flat-Output Space
Fortunately, the differential flatness of multicopters has been

well studied and shown to have physically meaningful flat-
output space which overlaps with the configuration space.
Explicit forms of Ψx and Ψu are available in [11]–[14] for a
variety of underactuated multicopters. More importantly, their
flat outputs share the same form in general:

z = (px, py, pz, ψ)T (6)

where (px, py, pz)
T is the translation of the Center of Gravity

(CoG) and ψ the yaw angle of the vehicle. The flat output z,
especially its translation, provides a lot of convenience for the
multicopter motion planning with complex spatial constraints.

To generate feasible motions for a multicopter, we first
optimize the trajectory z(t) : [0, T] 7→ Rm in its flat-output
space such that most of the spatial constraints are directly
enforced. Then, the flatness maps Ψx and Ψu are applied to
transform z(t) into the state-input trajectory x(t) and u(t).

For motion smoothness, the quadratic control effort [36]
with time regularization is adopted as a cost functional of z(t).
General constraints on multicopters can be classified into con-
figuration constraints and user-defined dynamic constraints.
Normally, a collision-free motion implies

z(t) ∈ F , ∀t ∈ [0, T], (7)

where F is the concerned obstacle-free region in configuration
space. Besides, user-defined state-input constraints such as
actuator limits or task-specific constraints are denoted by

GD(x(t), u(t)) � 0, ∀t ∈ [0, T]. (8)

Exploiting Ψx and Ψu, the corresponding constraints on z(t)
are computed as

GD(Ψx(z[s−1](t)),Ψu(z[s](t))) � 0, ∀t ∈ [0, T]. (9)

Apparently, via the flatness, a constraint on x and u has its
equivalent form on the finite derivatives of z(t). For simplicity,
we denote (9) hereafter by

G(z(t), ż(t), . . . , z(s)(t)) � 0, ∀t ∈ [0, T], (10)

where G consists of ng equivalent constraints.
It is worth noting that we do not make further assumptions

on the multicopter dynamics and flatness maps. In other words,
the proposed framework supports a wide range of multicopters,
including, but not limited to the ones in [11]–[15].

C. Problem Formulation

Concluding above descriptions gives the following problem:

min
z(t),T

∫ T

0

v(t)TWv(t)dt+ ρ(T), (11a)

s.t . z(s)(t) = v(t), ∀t ∈ [0, T], (11b)

G(z(t), . . . , z(s)(t)) � 0, ∀t ∈ [0, T], (11c)
z(t) ∈ F , ∀t ∈ [0, T], (11d)

z[s−1](0) = z̄o, z
[s−1](T) = z̄f , (11e)

where W ∈ Rm×m is a positive diagonal matrix, ρ : [0,∞) 7→
[0,∞] the time regularization, z̄o ∈ Rms the initial condition
and z̄f ∈ Rms the terminal condition. The control input v is
allowed to be discontinuous in a finite number of time instants,
as is commonly assumed in existing literature [36].

The trajectory optimization (11) is nontrivial because of the
continuous-time constraints G and the nonconvex set F . We
further specify some reasonable conditions to make it a well
defined problem. As for time regularization ρ, it trades off
between the control effort and the expectation of total time,

ρs(T) =

MT∑
i=0

biT
i, (12)

where bMT
is positive. Common choices are ρs(T) = kρT and

ρs(T) = kρ(T − TΣ)2 with an expected time TΣ. Besides, ρ
can also be defined to strictly fix the total time:

ρf (T) =

{
0 if T = TΣ,

∞ if T 6= TΣ.
(13)

As for nonlinear constraints G, they are required to be C2, i.e.,
twice continuously differentiable. As for the feasible region F
in the configuration space, we approximate it geometrically by
the union of MP closed convex sets as

F ' F̃ =

MP⋃
i=1

Pi. (14)

For simplicity, locally sequential connection is assumed on
these convex sets:{

Pi ∩ Pj = ∅ if |i− j| = 2,

Int (Pi ∩ Pj) 6= ∅ if |i− j| ≤ 1,
(15)

where Int(·) means the interior of a set. The translation of z̄o
and z̄f is inscribed in P1 and PMP , respectively. As for F̃ ,
we consider the case that each Pi is a closed m-dimensional
ball:

PBi =
{
x ∈ Rm

∣∣∣ ‖x− oi‖2 ≤ ri} , (16)

or, more generally, a bounded convex polytope described by its
H-representation [37] with potentially redundant constraints:

PHi =
{
x ∈ Rm

∣∣∣ Aix � bi
}
. (17)

For the optimization in (11), we aim to construct a computa-
tionally efficient solver while retaining the flexibility to handle
different task-specific constraints GD in (8).

5

IV. MULTI-STAGE CONTROL EFFORT MINIMIZATION

In this section, we analyze the multi-stage control effort
minimization without functional constraints. For this prob-
lem, we propose easy-to-use optimality conditions for gen-
eral cases, which are proved to be necessary and sufficient.
Leveraging our conditions, the optimal trajectory is directly
constructed in linear complexity of time and space, without
evaluating the cost functional explicitly or implicitly. Base on
them, a novel trajectory class along with linear-complexity
spatial-temporal deformation is designed to meet user-defined
objectives in various trajectory planning scenarios.

A. Unconstrained Control Effort Minimization

When constraint F exists, adjusting the waypoints [28] or
control points [33] of a trajectory helps to ensure safety. When
constraint G exists, adjusting the time allocation also helps to
enforce physical limits [38]. Therefore, spatial and temporal
parameters are both vital to a flexible trajectory representation.
A natural problem is to generate a smooth trajectory subject
to these parameters. We solve Linear Quadratic Minimum-
Time (LQMT) problems to generate trajectories from spatial-
temporal parameters. Although the LQMT problems have
extensive studies and applications, only single-stage problems
are considered in the literature [39]–[41]. We study the multi-
stage problems where intermediate points and time vector are
fixed in advance for multi-piece trajectories. Consider an M -
stage control effort minimization without F and G,

min
z(t)

∫ tM

t0

v(t)TWv(t)dt, (18a)

s.t . z(s)(t) = v(t), ∀t ∈ [t0, tM], (18b)

z[s−1](t0) = z̄o, z
[s−1](tM) = z̄f , (18c)

z[di−1](ti) = z̄i, 1 ≤ i < M, (18d)
ti−1 < ti, 1 ≤ i ≤M. (18e)

The time interval [t0, tM] is split into M stages by M+1 fixed
timestamps, with constant boundary conditions z̄o, z̄f ∈ Rms.
Intermediate conditions z̄i ∈ Rmdi with di ≤ s specify the
value of z(ti), ż(ti), . . . , z(di−1)(ti), where di is number of
derivatives fixed at ti. For example, if z(t) is only required to
pass a given position at ti, then di = 1 because z̄i contains
the 0-order derivative and nothing else.

Existing works focus on the necessary conditions for special
cases of (18). In aerial robotics area, the QP formulation [11]
and the closed-form one [28] implicitly or explicitly optimize
unknown knot derivatives, taking parameterization as a priori.
This extra computation actually makes them less efficient. In
control area, a special case where di = 1 is also studied
in [42] and [43] via controllability Gramian. The result is for
general linear systems with possibly nonpolynomial solutions
while it is less intuitive considering the computational aspect.
These necessary conditions can cause potential degeneracy in
trajectory representation and sensitivity, if further parametric
optimization on spatial-temporal parameters is needed.

B. Optimality Conditions
We propose necessary and sufficient optimality conditions

for (18) with all possible settings of di, z̄i, and ti. Thus, an
optimal trajectory can be directly constructed from spatial-
temporal parameters. Furthermore, the existence and unique-
ness of the optimal trajectory are always guaranteed.

We transform (18) into the Mayer form [23] in which a new
state y ∈ Rms+1 augmented by ỹ ∈ R is defined as

y =

(
z[s−1]

ỹ

)
. (19)

The augmented system ẏ = f̂(y, v) has the structure

ẏ =

(
Ā 0
0T 0

)
y +

 0
v

vTWv

 , (20)

where
Ā =

(
0 Im(s−1)

0m×m 0T

)
∈ Rms×ms. (21)

We design a running process for the augmented system in M
stages, of which the i-th is ∆i = [ti−1, ti]. It is worth noting
that state switching occurs in this running process. Strictly
speaking, the state switching only occurs on ỹ at the beginning
of each stage. Denote by y[i] : ∆i 7→ Rms+1 the augmented
state trajectory in the i-th stage, which consists of two parts,
z

[s−1]
[i] and ỹ[i]. At each timestamp ti, the state transfers from
y[i] to y[i+1], and the part ỹ is reset as

ỹ[i+1](ti) = 0, 0 ≤ i < M, (22)

thus switching the partial state from ỹ[i](ti) to 0. The z[s−1]

part remains continuous between stages, which means

z
[s−1]
[i] (ti) = z

[s−1]
[i+1] (ti), 1 ≤ i < M. (23)

The conditions in (18c) and (18d) are still satisfied, i.e.,

z
[s−1]
[1] (t0) = z̄o, z

[s−1]
[M] (tM) = z̄f , (24)

z
[di−1]
[i] (ti) = z̄i, 1 ≤ i < M. (25)

In this process, the cost functional in (18) is converted into the
sum of terminal cost of each stage for the augmented system,
i.e.,

∑M
i=1 ỹ[i](ti). Therefore, the optimal trajectories for the

augmented system and the original one are identical in z[s−1].
We utilize the Hybrid Maximum Principle [44] to derive

necessary conditions for the optimal solution.

Theorem 1 (Hybrid Maximum Principle). Let t0 < · · · <
tM be real numbers and ∆k = [tk−1, tk]. For any collection
of absolute continuous functions xk : ∆k 7→ Rnk , define a
vector, xΣ ∈ Rn̄ where n̄ = 2

∑M
k=1 nk, as

xΣ =
(
xT

1 (t0), xT
1 (t1), . . . , xT

M (tM−1), xT
M (tM)

)T
. (26)

On the time interval ∆ = [t0, tM] consider the problem

min
uk,xk

J(xΣ), (27a)

s.t . ẋk(t) = fk(xk(t), uk(t)), (27b)
uk(t) ∈ Uk ⊆ Rrk , (27c)
∀t ∈ ∆k, k = 1, . . . ,M, (27d)
η(xΣ) = 0, (27e)

6

where fk : Rnk ×Rrk 7→ Rnk , J : Rn̄ 7→ R and η : Rn̄ 7→ Rq
are continuously differentiable, uk : R 7→ Rrk are measurable
and bounded on the corresponding ∆k.

Denote an optimal process for (27) by (x∗(t), u∗(t)). Then,
there exists a collection (α, γ, ψ1, . . . , ψM), where α ≥ 0,
γ ∈ Rq and ψk : ∆k 7→ Rnk are Lipschitz continuous. It
generates M Pontryagin functions

Hk(ψk, xk, uk) = ψT
k fk(xk, uk), t ∈ ∆k, (28)

and a Lagrange function L(xΣ) = αJ(xΣ) + γTη(xΣ). The
following conditions are satisfied for all k = 1, . . . ,M .
• Nontriviality condition:

(α, γT) 6= 0; (29)

• Adjoint equations: for almost all t ∈ ∆k,

ψ̇k(t) = −∂Hk

∂xk
(ψk(t), x∗k(t), u∗k(t)); (30)

• Transversality conditions:{
ψk(tk−1) = Lxk(tk−1)(x

∗
Σ),

ψk(tk) = −Lxk(tk)(x
∗
Σ);

(31)

• Maximality conditions: for all t ∈ ∆k,

Hk(ψk(t), x∗k(t), u∗k(t))

= sup
uk∈Uk

Hk(ψk(t), x∗k(t), uk) (32)

= 0.

Proof. The proof can be directly adapted from Theorem 4 by
Dmitruk and Kaganovich [44]. Here we only consider each
system fk to be time-invariant and all intervals ∆k to be fixed.
Besides, no inequality constraints are specified on xΣ.

According to Theorem 1, the costate ψ[i] : ∆i 7→ Rms+1 in
the i-th stage is defined as

ψ[i] =

(
λ[i]

µ[i]

)
=
(
λ[i]1

, λ[i]2
, . . . , λ[i]s

, µ[i]

)T
, (33)

where µ[i] : ∆i 7→ R. λ[i]j
: ∆i 7→ Rm is the j-th map in

λ[i] : ∆i 7→ Rms. The i-th Pontryagin function of (20) is

Hi(ψ[i], y[i], v[i]) = ψT
[i]f̂(y[i], v[i]) (34)

= λT
[i]Āz

[s−1]
[i] + λT

[i]s
v[i] + µ[i]v

T
[i]Wv[i].

By applying the adjoint equation (30) for µ[i], we have
µ̇[i] = 0, which means µ[i](t) = µ̄i ∈ R is a constant in
∆i. Therefore, Hi is always a quadratic function of v[i],

Hi(ψ[i], y[i], v[i]) = λT
[i]Āz

[s−1]
[i] +λT

[i]s
v[i]+µ̄iv

T
[i]Wv[i]. (35)

By applying the adjoint equation for λ[i], we obtain

λ̇[i] = −ĀTλ[i], (36)

which is expanded as

λ̇[i]j
=

{
0 if j = 1,

−λ[i]j−1
if 2 ≤ j ≤ s.

(37)

It is obvious that λ[i]s
(t) is an s− 1 degree polynomial.

According to maximality conditions (32), the supremum of
Hi is always 0 in ∆i. Thus the positive definiteness of W
implies µ̄i ≤ 0. If µ̄i = 0, then (35) becomes a linear function
of v[i]. The zero supremum means that λ[i]s

(t) = 0 in ∆i. As
the result of (36), ψ[i](t) = 0 holds for all t in ∆i. In such
a case, a contradiction occurs that the nontriviality condition
(29) and the transversality conditions (31) cannot be satisfied
at the same time. Therefore, µ̄i < 0 always holds in the whole
∆i. The optimal control v∗[i] can be obtained from

∂Hi

∂v[i]
(ψ[i], y

∗
[i], v

∗
[i]) = λ[i]s

+ 2µ̄iWv∗[i] = 0, (38)

i.e.,

v∗[i](t) = − 1

2µ̄i
W−1λ[i]s

(t), ∀t ∈ ∆i. (39)

Then, z∗[i] produced by a chain of s-integrators from λ[i]s
(t),

is a 2s− 1 degree polynomial.
To further explore structures of the solution, we generate the

Lagrange function using the cost of augmented system along
with all constraints in (23), (24) and (25). We have

L(yΣ) = α

M∑
i=1

ỹ[i](ti) +

M−1∑
i=0

γiỹ[i+1](ti) (40)

+

M−1∑
i=1

(ζT
i , σ

T
i)(z

[s−1]
[i] (ti)− z[s−1]

[i+1] (ti))

+ θT
o (z

[s−1]
[1] (t0)− z̄o) + θT

f (z
[s−1]
[M] (tM)− z̄f)

+

M−1∑
i=1

θT
i (z

[di−1]
[i] (ti)− z̄i),

where γi ∈ R, ζi ∈ Rmdi , σi ∈ Rm(s−di), θo ∈ Rms,
θf ∈ Rms and θi ∈ Rmdi are all constant coefficients of
corresponding constraints, yΣ is defined as in (26). Following
transversality conditions (31), taking the derivative of L w.r.t.
yΣ gives the boundary values of costates ψ[i] and ψ[i+1], i.e.,

λ[i](ti) = −
(
ζi + θi
σi

)
, λ[i+1](ti) = −

(
ζi
σi

)
, (41)

µ[i](ti) = µ[i+1](ti+1) = −α. (42)

Because µ[i+1](t) = µ̄i+1 in ∆i+1, we have

µ̄i = −α, 1 ≤ i ≤M. (43)

Finally, by substituting (36), (41) and (43) into (39), we obtain
that the optimal controls of two consecutive stages satisfy

v∗
(j)
[i] (ti) = v∗

(j)
[i+1](ti), 0 ≤ j < (s− di). (44)

We finally know that the optimal control of the problem
(18) is actually s − di − 1 times continuously differentiable
at the timestamp ti. Accordingly, the optimal state trajectory,
consisting of M polynomials with 2s − 1 degree, is indeed
2s− di − 1 times continuously differentiable at ti.

Now we conclude the conditions derived from both (39)
and (44) in the following theorem, which are proved to be
necessary and sufficient optimality conditions of (18).

7

Theorem 2 (Optimality Conditions). A trajectory, denoted
by z∗(t) : [t0, tM] 7→ Rm, is optimal for the problem (18), if
and only if the following conditions are satisfied:
• The map z∗(t) : [ti−1, ti] 7→ Rm is parameterized as a

2s− 1 degree polynomial for any 1 ≤ i ≤M ;
• The boundary conditions in (18c);
• The intermediate conditions in (18d);
• z∗(t) is d̄i − 1 times continuously differentiable at ti for

any 1 ≤ i < M where d̄i = 2s− di.
Moreover, a unique trajectory exists for these conditions.

Proof. The proof of necessity is evident in the analyses from
(33) to (44) that are directly derived from Theorem 1. The
proof of sufficiency is sketched below: (a) The first and fourth
conditions always determine a linear spline space of dimension
2s +

∑M−1
i=1 di for any sequence of di; (b) The second and

third conditions are shown to form a square coefficient matrix
on a basis of the spline space; (c) The matrix is proved to be
nonsingular since ti−1 < ti for each i, implying the existence
and uniqueness of solution; (d) The existence and uniqueness
for the necessary conditions yield their sufficiency. This proof
of sufficiency is detailed in Appendix A.

To further explain the optimality conditions, we take the
multi-stage jerk minimization as an example. In this example,
the position, velocity and acceleration are states of the jerk-
controlled system (s = 3). There are intermediate points
(di = 1) that the trajectory should pass through at certain
timestamps. The continuity of state only requires the continu-
ity up to acceleration of the minimum-jerk trajectory, while
jerk and snap of the optimal trajectory are also continuous
everywhere. Accordingly, if we enforce all these continuity
conditions, then Theorem 2 guarantees that only one trajectory
exists, which is exactly the optimal one.

C. Minimization Without Cost Functional

Theorem 2 provides a direct way to construct the unique
optimal trajectory. The computation enjoys linear complexity
in time and space. It does not even require explicit or implicit
evaluation of the cost functional or its gradient.

Consider an m-dimensional trajectory whose i-th piece is
denoted by an N = 2s− 1 degree polynomial:

pi(t) = cT
i β(t− ti−1), t ∈ [ti−1, ti], (45)

where β(x) = (1, x, . . . , xN)T is the basis and ci ∈ R2s×m

the coefficients. For simplicity, we use the timeline relative
to t0 = 0. The trajectory is described by a coefficient matrix
c ∈ R2Ms×m and a time vector T ∈ RM>0 defined by

c =
(
cT

1 , . . . , c
T
M

)T
, T = (T1, . . . , TM)

T
, (46)

where Ti means the duration of the i-th piece. Then we have
the timestamp ti =

∑i
j=1 Tj and the total duration T = ‖T‖1.

The M -piece trajectory p : [0, T] 7→ Rm is defined by

p(t) = pi(t), ∀t ∈ [ti−1, ti), ∀i ∈ {1, . . . ,M}. (47)

To compute the unique solution for (18), we directly enforce
optimality conditions on the coefficient matrix c. Denote by

D0,DM ∈ Rs×m and Di ∈ Rdi×m the specified derivatives at
boundaries and intermediate timestamp ti, respectively. Each
column of Di is related to one dimension. Then, conditions
at ti are formulated by Ei,Fi ∈ R2s×2s:(

Ei Fi
)(ci

ci+1

)
=

(
Di

0d̄i×m

)
, (48)

Ei = (β(Ti), . . . , β
(di−1)(Ti), (49)

β(Ti), . . . , β
(d̄i−1)(Ti))

T,

Fi = (0,−β(0), . . . ,−β(d̄i−1)(0))T. (50)

Specially, define F0,EM ∈ Rs×2s as

F0 =(β(0), . . . , β(s−1)(0))T, (51)

EM =(β(TM), . . . , β(s−1)(TM))T. (52)

The linear system for the optimal coefficient matrix is

Mc = b (53)

where M ∈ R2Ms×2Ms and b ∈ R2Ms×m are

M =

F0 0 0 · · · 0
E1 F1 0 · · · 0
0 E2 F2 · · · 0
...

...
...

. . .
...

0 0 0 · · · FM−1

0 0 0 · · · EM

, (54)

b = (DT
0 ,D

T
1 ,0m×d̄1

, . . . ,DT
M−1,0m×d̄M−1

,DT
M)T. (55)

It is essential that the uniqueness in Theorem 2 ensures the
nonsingularity of M for any time vector T � 0. Consequently,
the unique solution c can be obtained via linear equation
system (53) with a banded matrix M, i.e., a banded system.
As for a nonsingular banded system, its Banded PLU Factor-
ization always exists [45], which can be employed to compute
the solution with O(M) time and space complexity [46].
Therefore, without the need of cost functional, the unique
solution of problem (18) is obtained in the lowest complexity,
by directly applying our optimality conditions.

D. MINCO Trajectories With Spatial-Temporal Deformation

For multicopters, there are often task-specific requirements
apart from feasibility, such as the perception quality in active
SLAM [47] or the occlusion rate in aerial videography [48].
These user-defined requirements majorly need to flexibly and
adaptively deform both the spatial and temporal profile of a
trajectory. Therefore, we select the intermediate points and the
time vector as two salient parameters in (18). Fortunately, the
existence and uniqueness of solution guarantee the smoothness
of sensitivity for them. An iterative procedure is then designed
to conduct the spatial-temporal deformation with the lowest
computation complexity per iteration.

We denote the intermediate points by q = (q1, . . . , qM−1)
where qi ∈ Rm is a specified 0-order derivative at ti. Denote
by T = (T1, . . . , TM)T the time vector where Ti ∈ R>0. For
any pair of q and T, Theorem 2 naturally determines a trajec-
tory belonging to a class of control effort minimizers, named

8

MINCO hereafter. The MINCO trajectory class, denoted by
TMINCO, is defined as

TMINCO =
{
p(t) : [0, T] 7→ Rm

∣∣∣ c = c(q,T) determined

by Theorem 2, ∀ q ∈ Rm×(M−1), T ∈ RM>0

}
.

The dimension m, the system order s, initial and terminal
conditions are omitted here for brevity. Intuitively, all trajecto-
ries in TMINCO are compactly parameterized by only q and T.
Evaluating an element in TMINCO directly follows our linear-
complexity formulation.

We denote any user-defined objective (or constraint) on a
trajectory by a C2 function K(c,T) with available gradient.
This objective on TMINCO can be computed as

W(q,T) = K(c(q,T),T). (56)

To accomplish deformation of TMINCO, the function W to-
gether with its gradient ∂W/∂q and ∂W/∂T are needed for
a high-level optimizer to optimize the objective. Obviously,
evaluating W shares the same complexity as evaluating any
trajectory in TMINCO. The key procedure is to compute the
gradient. Now we give a linear-complexity scheme to compute
∂W/∂q and ∂W/∂T from the given ∂K/∂c and ∂K/∂T. We
first rewrite the linear equation system (53) as

M(T)c(q,T) = b(q). (57)

Without causing ambiguity, we omit parameters in M,b, c,K
and W temporarily for simplicity. Any notation involving c is
interpreted as c(q,T). Denote by qi,j the j-th entry in qi.

As for the gradient w.r.t. q, we first differentiate both sides
of (57) w.r.t. qi,j , which gives

∂c

∂qi,j
= M−1 ∂b

∂qi,j
. (58)

Then,

∂W
∂qi,j

= Tr

{(
∂c

∂qi,j

)T
∂K
∂c

}

= Tr

{(
M−1 ∂b

∂qi,j

)T
∂K
∂c

}

= Tr

{(
∂b

∂qi,j

)T(
M−T ∂K

∂c

)}
, (59)

where Tr (·) is the trace operation. The definition of b(q) in
(55) implies that ∂b/∂qi,j only has a single nonzero entry 1
at its (2i− 1)s+ 1 row and j column. Thus, stacking all the
resultant scalars gives

∂W
∂qi

=

(
M−T ∂K

∂c

)T

e(2i−1)s+1, (60)

where ej is the j-th column of I2Ms. Now that we have already
conducted the banded PLU factorization for M when we
compute c. We can reuse the factorization to avoid inverting
MT. Define a matrix G ∈ R2Ms×m as

MTG =
∂K
∂c

. (61)

We only need to compute G once to obtain ∂W/∂qi for all
1 ≤ i < M . Denote the factorization of M as M = PLU.
Specifically, L is a banded matrix with zero upper bandwidth
and all-ones diagonal entries. U is a banded matrix with
zero lower bandwidth and nonzero diagonal entries because
of the nonsingularity of M. The pivoting matrix P simply
changes the row order of the operand, satisfying PTP = I.
Consequently, the transpose also has a Banded LUP Factor-
ization [45]. Specifically, MT = L̄ŪPT, where

L̄ = UT (U ◦ I)−1
, Ū = (I ◦U)LT, (62)

where the inverse is only done for a diagonal matrix and ◦ the
Hadamard product. Then, G can be also computed in linear
complexity through such a factorization. For convenience, we
partition G into

G =
(
GT

0 ,G
T
1 , . . . ,G

T
M−1,G

T
M

)T
(63)

such that G0,GM ∈ Rs×m and Gi ∈ R2s×m for 1 ≤ i < M .
After that, the gradient of W w.r.t. q is determined as

∂W
∂q

=
(
GT

1 e1, . . . ,G
T
M−1e1

)
, (64)

where e1 is the first column of I2s. This operation takes out
M − 1 specific columns in GT.

As for the gradient w.r.t. T, differentiating both sides of
(57) w.r.t. Ti gives

∂M

∂Ti
c + M

∂c

∂Ti
= 0. (65)

Thus,

∂W
∂Ti

=
∂K
∂Ti

+ Tr

{(
∂c

∂Ti

)T
∂K
∂c

}

=
∂K
∂Ti
− Tr

{(
∂M

∂Ti
c

)T

M−T ∂K
∂c

}

=
∂K
∂Ti
− Tr

{
GT ∂M

∂Ti
c

}
(66)

The banded structure of M implies that

GT ∂M

∂Ti
c = GT

i

∂Ei
∂Ti

ci. (67)

Then we obtain the gradient w.r.t. Ti computed as

∂W
∂Ti

=
∂K
∂Ti
− Tr

{
GT
i

∂Ei
∂Ti

ci

}
, (68)

where ∂Ei/∂Ti can be analytically derived from (49). Com-
puting (68) for every 1 ≤ i ≤M gives ∂W/∂T.

Finally, we finish the computation of ∂W/∂q and ∂W/∂T.
It can be verified from both (64) and (68) that the gradient
propagation is also done in O(M) complexity. As for K,
we make no assumption on its concrete form. Actually, the
smoothness of K is not even needed if only the resultantW is
C2. In other word, the linear-complexity gradient propagation
enjoys both efficiency and flexibility. By incorporating it into
common optimizers, we can accomplish the spatial-temporal
deformation of TMINCO for a wide range of planning purposes
while maintaining the local smoothness of trajectories.

9

V. GEOMETRICALLY CONSTRAINED FLIGHT
TRAJECTORY OPTIMIZATION

In this section, we provide a unified framework for flight
trajectory optimization with different time regularization ρ(T),
spatial constraints F̃ and continuous-time constraints G. This
framework indeed relaxes the original problem into TMINCO.
The spatial-temporal deformation is utilized to meet various
feasibility requirements. Lightweight schemes are specially
designed to eliminate geometrical constraints such that the
trajectory can be freely deformed. For continuous-time con-
straints, a time integral penalty functional is proposed to ensure
the feasibility without sacrificing the scalability. Finally, our
framework transforms the constrained trajectory optimization
into a sparse unconstrained one which can be reliably solved.

A. Temporal Constraint Elimination

Fig. 3. Left: Domain of J on an M -piece trajectory with total time fixed
as TΣ. The domain is indeed the relative interior of an (M − 1)-simplex in
RM
>0. Right: Contour of ln J with M = 3. The function goes to infinity as

the time vector approaches the boundary of the open domain in R2
>0.

Deforming MINCO needs standard optimizers that are often
designed for Euclidean spaces. However, the trajectory defi-
nition and cost functional (11) both restrict the domain of T
to simple manifolds, on which frequent retractions are needed
during optimization. We give explicit diffeomorphisms for T
such that surrogate variables are in Euclidean spaces. Thus,
common efficient optimizers can be conveniently applied.

For polynomial splines, the control effort in (11) is a func-
tion of c and T, denoted by Jc(c,T). Analytical expressions
of Jc, ∂Jc/∂c, and ∂Jc/∂T are available in [28]. Now that
TMINCO are polynomial splines with coefficients determined
by c(q,T), the cost functional of (11) can be written as

J(q,T) = Jq(q,T) + ρ(‖T‖1), (69)

where Jq is defined as Jq(q,T) = Jc(c(q,T),T). Obviously,
computing Jq , ∂Jq/∂q, and ∂Jq/∂T from any provided Jc,
∂Jc/∂c, and ∂Jc/∂T can be done in O(M) complexity, as
already shown in deformation of TMINCO.

It is natural to optimize T via ∂J/∂T. However, Jq(q,T)
has its definition over T ∈ RM>0. It becomes unbounded when
any Ti approaches zero and no consecutively repeating points
appear in q. Besides, ρf defined in (13) further restricts the
domain of J to

∑M−1
i=1 Ti < TΣ, as shown in Fig. 3.

We use diffeomorphisms to eliminate constraints for ρf and
ρs. Consider the domain of ρf in (13),

Tf =
{
T ∈ RM

∣∣∣ ‖T‖1 = TΣ, T � 0
}
. (70)

It is clear that J(q, ·) is finite for a nontrivial q if and only if
T ∈ RelInt(Tf), i.e., the relative interior of Tf .

Proposition 1. Tf defined by (70) is diffeomorphic to RM−1.
Denote by τ = (τ1, . . . , τM−1) an element in RM−1. A C∞

diffeomorphism is given by the map below for 1 ≤ i < M :

Ti =
eτi

1 +
∑M−1
j=1 eτj

TΣ, TM = TΣ −
M−1∑
j=1

Tj . (71)

By exploiting the explicit diffeomorphism (71), we directly
minimize the cost function J over RM−1 via τ , because the
domain constraints are satisfied by default.

Optimizing τ requires gradient propagation. We partition
the gradient as ∂Jq/∂T = (gT

a , gb)
T, where ga ∈ RM−1 and

gb ∈ R. Differentiating the layer in (71) yields the gradient of
J w.r.t. τ ,

∂J

∂τ
=

(ga − gb1) ◦ e[τ]

1 + ‖e[τ]‖1
−
(
gT
a e

[τ] − gb‖e[τ]‖1
)
e[τ](

1 + ‖e[τ]‖1
)2 , (72)

where e[·] is the entry-wise exponential map, and 1 an all-ones
vector. If an initial guess T is specified, the corresponding τ
can be computed via the inverse map of the diffeomorphism,
given by τi = ln (Ti/TM) for 1 ≤ i < M . As for ρs in (12),
only T � 0 needs to be ensured. It suffices to use T = e[τ]

as the diffeomorphism between RM and RM>0.
For either ρf or ρs, we denote the diffeomorphism by T(τ).

Unconstrained optimization on τ can be directly conducted
to minimize J(q,T(τ)). Although T(τ) does not preserve
convexity, the original cost J(q,T) is already nonconvex as
given in (57). Thus, the only concern is whether T(τ) brings
new local minima in the space of τ or eliminates local minima
in the space of T.

Proposition 2. Denote by F : DF 7→ R any C2 function with a
convex open domain DF ∈ RN . Given any C2 diffeomorphism
G : RN 7→ DF, define H : RN 7→ R as H(y) = F (G(y)) for
y ∈ RN . For any x ∈ DF and y ∈ RN satisfying x = G(y)
or equivalently y = G−1(x), the following statements always
hold:
• ∇F (x) = 0 if and only if ∇H(y) = 0;
• ∇2F (x) is positive-definite (or positive-semidefinite) at
∇F (x) = 0, if and only if ∇2H(y) is positive-definite
(or positive-semidefinite) at ∇H(y) = 0.

Proof. See Appendix B.

Proposition 2 confirms that T(τ) preserves the first/second-
order necessary optimality conditions and second-order suf-
ficient optimality conditions [49]. It is also applicable to
substitute the exponential map in this subsection with any C2

diffeomorphism from R to R>0 for a better numerical condi-
tion. In the sense of commonly-used optimality conditions, our
constraint elimination does not produce extra spurious local
minima or cancel any existing one.

10

B. Spherical Spatial Constraint Elimination

Fig. 4. Inverse stereographic projection fs maps the Euclidean space Rn

onto a sphere without north pole Sn� in an (n + 1)-dimensional space. The
orthographic projection fo maps Sn� onto an n-dimensional ball Bn. The
variable ξ moves freely in Rn while the transformed variable q stays in Bn.
Optimization on ξ becomes unconstrained when q is constrained by a ball.

We enforce motion safety by confining trajectories into the
feasible region F̃ . Although F̃ is nonconvex, it is a union of
convex primitives that are sequentially connected. If all pieces
have been assigned into these primitives, the safety constraint
on each piece becomes convex and thus can be conveniently
encoded in G. Owing to the feature of MINCO, the traverse
time for every primitive can be directly optimized. Thus, we fix
the piece assignment before optimization, rather than resorting
to integer variables during optimization [33]. Consequently, in-
termediate points should be contained by the overlap between
primitives, forming inequalities. For Inequality Constrained
Problems (ICPs), general methods successively approximate
the constraints via additional parameters. However, we aim
to apply the constraints directly and efficiently. Therefore, we
propose spatial constraint elimination to enforce them exactly,
leveraging their geometrical properties.

Consider the constraint q ∈ P ⊂ Rn where P is a closed
ball. Its dimension satisfies n ≤ m since a low-dimensional
constraint also exists in Rm. If P is a closed ball PB centered
at point o with radius r,

PB =
{
x ∈ Rn

∣∣∣ ‖x− o‖2 ≤ r} , (73)

We utilize a smooth surjection to map Rn to PB such that
optimization over Rn implicitly satisfies the constraint PB. As
illustrated in Fig. 4, the map is a composition of the inverse
stereographic projection and the orthographic projection. First,
we utilize the inverse stereographic projection to map Rn to
Sn�, where Sn� is a unit sphere without north pole, i.e.,

Sn� =
{
x ∈ Rn+1

∣∣∣ ‖x‖2 = 1, xn+1 < 1
}
. (74)

The inverse stereographic projection fs is define as

fs(x) =
(2xT, xTx− 1)T

xTx+ 1
∈ Sn�, ∀x ∈ Rn. (75)

Note that fs is a diffeomorphism between Rn and Sn� [50].
We then project Sn� from Rn+1 back in Rn to obtain

Bn =
{
x ∈ Rn

∣∣∣ ‖x‖2 ≤ 1
}
. (76)

The map is described by

fo(x) = (x1, . . . , xn)T ∈ Bn, ∀x ∈ Sn�, (77)

Fig. 5. Constrained minimum q∗ of a convex function J(q) within a 2-D ball.
Transformed by fB , the resultant function J(fB(ξ)) becomes nonconvex but
it preserves the local minimum ξ∗ satisfying q∗ = fB(ξ∗) with no additional
local minimum introduced.

which is indeed a smooth surjection onto Bn. Each point in
Bn, except the center, is paired with two points in Sn�. The
composition of fs, fo, and a linear transformation, is a smooth
surjection:

fB(x) = o+
2rx

xTx+ 1
∈ PB, ∀x ∈ Rn. (78)

The map fB introduces a new coordinate, denoted by ξ, such
that optimizing ξ over Rn always satisfies the constraint on
q described by PB. For the i-th intermediate point qi, denote
by ξi the corresponding new coordinate. Accordingly, denote
by ξ the new coordinate for q. Optimizing ξ requires gradient
propagation for ∂J/∂q. Denote by gi the i-th entry ∂J/∂qi
in ∂J/∂q. Differentiating the layer fB gives the gradient

∂J

∂ξi
=

2rigi
ξT
i ξi + 1

− 4ri(ξ
T
i gi)ξi

(ξT
i ξi + 1)2

. (79)

If the optimization needs to start from an initial guess q,
the backward evaluation of ξ can be done by using a local
inverse of fB, given by ξi for 1 ≤ i < M :

ξi =
ri −

√
r2
i − ‖qi − oi‖

2
2

‖qi − oi‖22
(qi − oi). (80)

Similarly, we analyze influences that the smooth surjection
fB imposes on the constrained local minima in PB. Although
fB lacks the one-to-one correspondence as diffeomorphisms
possess, its components are all well-formed. Firstly, fo only
takes the first n entries of a point. This operation preserves at
least the first-order necessary conditions for local minima in
either Bn or Sn�. Secondly, fs is a diffeomorphism between
Sn� and Rn, thus satisfying Proposition 2. Therefore, we can
also confirm that fB does not produce extra spurious local
minima or cancel any existing one. As shown in Fig. 5, the
constrained minimum within a 2-D ball is transformed into an
unconstrained minimum.

C. Polyhedral Spatial Constraint Elimination

Now we consider the elimination of polyhedral constraints.
Specifically, P is a closed convex polytope PH defined by

PH =
{
x ∈ Rn

∣∣∣ Ax � b} . (81)

where Int(PH) 6= ∅ according to (15). Common optimization
algorithms use the H-representation of PH as linear inequality

11

Fig. 6. Transformations on a convex polytope. A convex polytope PH with
n̂+ 1 vertices is indeed a standard n̂-simplex in the barycentric coordinate.
The simplex PHw is then the image of an entry-wise square map [·]2 with
ball-shaped domain, which can be eliminated as in Fig. 4.

constraints. In our framework, we exploit their geometrical
property to eliminate these constraints so that TMINCO can be
freely deformed. To achieve this, we use the V-representation
of PH instead, where any q ∈ PH has a (general) barycentric
coordinate, i.e., a convex combination of vertices. To obtain
the vertices, we apply the efficient convex hull algorithm [51]
to the dual of PH based on an interior point calculated by
Seidel’s algorithm [52]. Note that this procedure produces
negligible overhead in our case (n ≤ 4).

The procedure to eliminate a polytope constraint is illus-
trated in the Fig. 6. We denote all n̂ + 1 vertices of PH
by (v0, . . . , vn̂), where vi ∈ Rn for each i. The barycentric
coordinate of a point q ∈ PH consists of the weights for these
vertices. To obtain a more compact form, define v̂i = vi − v0

and V̂ = (v̂1, . . . , v̂n̂), then the position can be calculated as

q = v0 + V̂w, (82)

where w = (w1, . . . , wn̂)T ∈ Rn̂ is the last n̂ entries in
the barycentric coordinate. The set of coordinates in convex
combinations can also be written as

PHw =
{
w ∈ Rn̂

∣∣∣ w � 0, ‖w‖1 ≤ 1
}
. (83)

The Main Theorem of Polytope Theory in [37] confirms the
equivalence between PHw and PH under (82). The polytope is
exactly converted into a standard (n̂ + 1)-simplex by simply
adding auxiliary variables and applying a linear map to q.
This process does not produce additional nonlinearity in the
optimization problem except that the dimension of decision
variables is increased. Therefore, we only consider the decision
variables on q as the corresponding w hereafter.

The simplex (83) can be eliminated by nonlinear transfor-
mations. We first use an entry-wise square map [·]2 : Rn̂ 7→ Rn̂
proposed in [53] to eliminate nonnegativity constraints using
w = [x]2. Then, the constraint PHw on w is transformed into
a closed unit ball Bn̂ on x,

Bn̂ =
{
x ∈ Rn̂

∣∣∣ ‖x‖2 ≤ 1
}
. (84)

Consequently, we can utilize the smooth surjection fB in (78)
again. The composition of (82), [·]2, and fB yields a smooth
surjection fH from Rn̂ onto PH:

fH(x) = v0 +
4V̂[x]2

(xTx+ 1)2
∈ PH, ∀x ∈ Rn̂. (85)

A new coordinate ξ is introduced by fH, where any ξ ∈
Rn̂ ensures q ∈ PH. The boundary of PH is also attainable.

Similarly, ξ is the new coordinate for q. Optimizing ξ requires
gradient propagation. Denote by gi the i-th gradient ∂J/∂qi
in ∂J/∂q, then differentiating the layer fH gives

∂J

∂ξi
=

8ξi ◦ V̂Tgi
(ξT
i ξi + 1)2

− 16gT
i V̂[ξi]

2

(ξT
i ξi + 1)3

ξi. (86)

If an initial guess q is specified, the corresponding ξ can be
computed via the local inverse of fH. The barycentric coordi-
nate of each qi can be obtained using the analytic approach by
Warren et al. [54]. After that the analytic local inverses of [·]2
and fB(·) give us the desired ξi. Another flexible way is to
directly minimize the squared distance between fH(ξ) and the
given qi. Both approaches have negligible time consumption
but promising results.

The map [·]2 in fH presents additional nonlinearity into
optimization. Fortunately, variable transformation via [·]2 is a
special case of the inequality-to-equality conversion [55]. Con-
cretely, the inequality constraints are −w � 0. By introducing
additional variables x, the equivalent equality constraints are
−w + [x]2 = 0, yielding w = [x]2. Such type of constraint
conversion is proved to preserve first/second-order necessary
conditions and second-order sufficient conditions for ICPs by
Bertsekas as provided in Section 4.3 of [55]. We confirm that
the additional nonlinearity in fH does not exclude the desired
minimum or produce undesired minimum practically.

Direct constraints on q are eliminated for either PB or PH
using a smooth surjection q(ξ). We can conduct unconstrained
optimization on ξ to minimize J(q(ξ),T(τ)) hereafter.

D. Time Integral Penalty Functional

After eliminating direct constraints, TMINCO can be freely
deformed to meet the continuous-time constraints G. However,
enforcing G over the entire trajectory involves infinitely many
inequalities that cannot be solved by constrained optimization.
It further needs temporal discretization that usually produces
a large number of decision variables. To preserve the sparsity
of trajectory parameterization, we decouple the resolution of
constraint evaluation from the number of decision variables.
Inspired by the constraint transcription [56], we transform G
into finite constraints by integral of constraint violations.

For a trajectory p : [0, T] 7→ Rm, we define

IkG [p] =

∫ T

0

max [G(p(t), . . . , p(s)(t)),0]k dt, (87)

where k ∈ R>0 and max [·,0]
k is the composition of the entry-

wise maximum and an entry-wise power function. Specifically,
smoothing is needed if k ≤ 1. The functional-type constraint
is then equivalent to equality constraints IkG [p] = 0. Actually,
IkG [p] is a function of trajectory parameters, which we adopt
as penalty terms. If k = 1, it forms a nonsmooth but exact
penalty. If k > 1, it forms a differentiable strictly convex
penalty. Thus either I3

G [p] or a smoothing approximation of
I1
G [p] can be adopted. For simplicity, we utilize I3

G [p] hereafter
unless otherwise specified. There are two reasons for choosing
a penalty function method. Firstly, the integral in (87) can only
be evaluated numerically, making the constraint approximation

12

inevitable. Secondly, penalty methods have no requirement on
a feasible initial guess which is nontrivial to construct.

We define the time integral penalty functional for p(t) as

IG [p] = χTIkG [p]. (88)

where χ ∈ Rng

≥0 is a weight vector. Normally, χ should contain
large constants. If no constraint is violated, IG [p] remains zero.
Otherwise, if any part on p(t) violates any constraint in G,
the penalty functional IG [p] grows rapidly. By incorporating
IG [p] into the cost functional, continuous-time constraints are
enforced within an acceptable tolerance.

Practically, IG [p] can only be evaluated by quadrature. To
conduct the quadrature, we first define a sampled function Gτ :
R2s×m × R>0 × [0, 1] 7→ Rng as

Gτ (ci, Ti, τ) = G
(
cT
i β(Ti · τ), . . . , cT

i β
(s)(Ti · τ)

)
, (89)

where τ ∈ [0, 1] is a normalized stamp. Then the quadrature
for IG [p], denoted by I : R2Ms×m×RM>0 7→ R>0, is computed
as a weighted sum of the sampled penalty,

I(c,T) =

M∑
i=1

Ti
κi

κi∑
j=0

ω̄jχ
T max [Gτ (ci, Ti,

j

κi
),0]k, (90)

where κi controls the resolution. We choose the trapezoidal
rule (ω̄0, ω̄1, . . . , ω̄κi−1, ω̄κi

) = (1/2, 1, . . . , 1, 1/2) because
of its reliable performance for ill-shaped C2 integrands in our
practice. Intuitively, I(c,T) is a differentiable approximation
to IG [p], whose precision is adjustable through κi. The value
and gradient at most timestamps can be parallelly computed
then directly combined as one.

E. Trajectory Optimization via Unconstrained NLP
Due to G and F in (11), the optimal trajectory parameter-

ization is generally hard to know. Unlike traditional methods
approximating solutions via a large number of variables [23],
we propose to solve a lightweight relaxed optimization via
unconstrained NLP, where the spatial-temporal deformation of
TMINCO is applied. The relaxation to (11) is defined as

min
ξ,τ

J(q(ξ),T(τ)) + I(c(q(ξ),T(τ)),T(τ)), (91)

where J is the time-regularized control effort (69) for TMINCO

and I is the quadrature of penalty functional (90). Note that
any task-specific requirement, either objectives or constraints,
can be combined in (91) without affecting its structure.

To generate trajectories for a flat multicopter, we first param-
eterize its flat-output trajectory as TMINCO. After assigning a
fixed number of pieces into each Pi, variable transformations
are applied to eliminate all direct constraints. User-defined GD
are also transformed into G via Ψx and Ψu. Finally, we obtain
the cost function (91). Apparently, the gradient propagation is
derived for all layers except Ψx and Ψu. One can either apply
Automatic Differentiation (AD) [57] to Ψx and Ψu or derive
the gradient propagation analytically by following the reverse-
mode AD. The efficiency is the same as the flatness map as
ensured by Baur-Strassen Theorem [58]. The differentiation
is only needed for the given flat dynamics once and for all.
With available gradient, the relaxation (91) is then solved by
the L-BFGS algorithm [59].

VI. APPLICATIONS

A. Large-Scale Unconstrained Control Effort Minimization

Fig. 7. Computation time tcomp. under different piece numbers M . The
top and middle figures give the performance for jerk minimization (s = 3)
and snap minimization (s = 4), respectively. The bottom figure shows the
efficiency of two linear-complexity schemes for very large-scale problems.

We benchmark several existing schemes over problem (18),
including the QP formulation by Mellinger and Kumar [11],
the closed-form solution by Bry et al. [28], and the linear-
complexity scheme by Burke et al. [60]. We implement all
these schemes in C++11 without any explicit hardware accel-
eration. Mellinger’s scheme is implemented using OSQP [61].
Bry’s solution is evaluated by both a dense solver and a sparse
one [62]. Burke’s scheme is re-implemented here for fairness,
which is faster than the original one [60]. The benchmark is
conducted on an Intel Core i7-8700 CPU under Linux.

The performance is reported in Fig. 7. Both jerk s = 3
and snap s = 4 are minimized as defined in (18). Mellinger’s
scheme [11] only performs better than the dense evaluation
of Bry’s closed-form solution [28] on middle-scale problems
(101 < M < 103). Burke’s scheme [60] benefits from
its linear complexity, thus it can solve large-scale problems
(104 < M < 106). Our scheme improves the computation
speed by orders of magnitude against the others at any problem
scale while retaining O(M) complexity.

In conclusion, our optimality conditions provide a practical
way to directly construct the solution of problem (18), which
possesses simplicity, efficiency, stability and scalability. The
trajectory class TMINCO can serve as a reliable submodule of
our optimization framework.

13

B. Trajectory Generation Within Safe Flight Corridors

Fig. 8. Piece assignment for a trajectory within different kinds of safe flight
corridors in Rn. Each geometrical primitive is assigned with K pieces. An
intermediate point qi is assigned to Pdi/Ke ∩ Pd(i+1)/Ke. For ball-shaped
corridors, a point is further anchored to an (n− 1)-dimensional disk if it is
assigned to the intersection of two n-dimensional balls.

Fig. 9. Optimized trajectories within different kinds of 3-D SFCs. The speed
profile is colored according to its magnitude. The proposed method generates
smooth trajectories within randomly generated SFCs. The speed persistently
attains the maximum even if SFCs are narrow and twisted.

As a special case of problem (11), trajectory generation
within 3-D Safe Flight Corridors (SFCs) has been widely
adopted in real-world applications such as [31], [63], and [64].
The SFCs are usually generated by the front end of a tra-
jectory planning framework as an abstraction of the con-
cerned configuration space, such as the Parallel Convex Clus-
ter Inflation (PCCI) [31], the Regional Inflation by Line
Search (RILS) [38], the Safe-Region RRT* Expansion [64], or
the Iterative Regional Inflation by Semidefinite programming
(IRIS) [65]. We assume that an SFC, either polyhedron-shaped
or ball-shaped, is already obtained here as in (14) and (15).
Optimizing dynamically feasible trajectories within SFCs is
usually taken as a back end of such kind of frameworks.

As is illustrated in Fig. 8, we consider two kinds of SFCs.
Each convex primitive is assigned with K trajectory pieces,
thus M = MPK. The i-th trajectory piece pi(t) : [0, Ti] 7→ R3

is assigned to Pdi/Ke. The intermediate point assignment of
TMINCO is also determined. Applying the constraint elimina-
tion, direct constraints on T and q are automatically satisfied,
such as T ∈ R>0 for ρs(T) = kρT , ‖T‖1 < TΣ for ρf , as

Fig. 10. Benchmark on computation efficiency. The Proposed? one outper-
forms other methods by orders of magnitudes. Methods from Tordesillas? and
Deits? suffer from combinatorial explosion, but they are faster than Patterson?
on small-scale problems. Methods not supporting time or interval optimization
consume less computation time at the sacrifice of quality.

Fig. 11. Geometrical profiles of trajectories generated by different methods
in a random environment. The trajectory from the Proposed? one is closer to
the ground truth from Patterson? than all other specialized ones.

well as qi ∈ Pdi/Ke ∩ Pd(i+1)/Ke for all i. Constraints G are
specified as follows to ensure both safety and dynamic limits:

pi(t) ∈ Pdi/Ke, ∀t ∈ [0, Ti], ∀1 ≤ i ≤M,

‖p(1)
i (t)‖2 ≤ v2

max, ∀t ∈ [0, Ti], ∀1 ≤ i ≤M,

‖p(2)
i (t)‖2 ≤ a2

max, ∀t ∈ [0, Ti], ∀1 ≤ i ≤M,

(92)

where vmax and amax are dynamic limits. Then, the trajectory
generation in F̃ can be accomplished by solving the uncon-
strained NLP in (91). We show some optimization results in
Fig. 9 for randomly generated SFCs. Both the polyhedron-
shaped and ball-shaped SFCs are handled.

To further evaluate the performance of our method, we
benchmark several existing methods over polyhedron-shaped
SFCs. Technical details for all methods are listed as here:
• Proposed?: Jerk energy minimization is conducted with

either linear time regularization or fixed total time. Con-
straints in (92) are enforced.

• Patterson? [24]: The LQMT problem of a jerk-controlled
system is solved using Gauss pseudospectral method.
Each trajectory phase is confined within one polytope.
Dynamic limits are enforced through path constraints.

• Gao? [31]: A geometrical curve is optimized via QP
formed by jerk energy cost and linear safety constraints

14

Fig. 12. Benchmark on success rates, relative control effort, and flight dura-
tions. Methods from Deits? and Tordesillas? have relatively low success rates
because they optimize interval allocation which involves integer variables.
Methods from Deits and Mellinger have relatively large control effort because
optimization on time or interval allocation is not supported. Note that some
methods need preassigned total flight duration.

on control points of Bézier curves. Its temporal profile is
then optimized by an SOCP for TOPP under (92).

• Deits? [30]: The jerk energy and interval allocation of a
trajectory is optimized by an MISOCP. Safety constraints
and dynamic limits on L1-norm of trajectory derivatives
are exactly enforced through SOS conditions. Each tra-
jectory piece is a 3-degree polynomial.

• Deits: Details are the same as Deits? except that intervals
are allocated heuristically. No integer variable exists.

• Tordesillas? [33]: Details are the same as Deits? except
that safety is ensured by linear constraints on control
points of Bézier curves. An MIQP is solved instead. The
total time is determined by a well-designed algorithm.

• Mellinger [11]: A trajectory is optimized in a QP formed
by quadratic cost on jerk and linear safety constraints
on sampled points. Its time allocation is generated with
trapezoidal velocity profiles. Dynamic limits in (92) are
enforced by time scaling [38].

• Sun? [35]: A trajectory is optimized in a bilevel frame-
work. The low-level QP is exact the same as Tordesillas?

except that 6-degree polynomials are used. Its time allo-
cation is optimized in the upper level optimization using
analytical sensitivity of the low-level one.

A method is asterisked if it supports optimizing time allo-
cation or interval allocation. Dynamic limits are treated as the
same for either L1-norm or L2-norm. Thus, constraints are
indeed much tighter on methods from the Proposed?, Gao?,
Mellinger, and Patterson?, that restrict L2-norm of derivatives.
As for total time, Deits? and Sun? need preassigned values,
thus, we set their total time using trapezoidal velocity profiles.
Patterson∗ handles the original problem directly, taking advan-
tage of the exponential convergence of global collocation [24].
Therefore, we take its trajectory as the ground truth.

The benchmark is conducted in randomly generated envi-
ronments, one of which is shown in Fig. 11. The corridor size

(a) Trajectories from different methods within a long SFC of the office.

(b) The velocity and acceleration magnitude for different methods.

Fig. 13. Trajectory profiles with large weight on time regularization. Only
the Proposed? one and the ground truth from Patterson? generate persistently
tight trajectories, considering the continuous-time constraints on norms of
derivatives.

MP ranges from 2 to 64 where 10 SFCs are generated for
each size. The facet number of PHi ranges from 8 to 30. We
set K = 1, kρ = 1024.0, vmax = 5.0m/s, amax = 7.0m/s2,
κi = 16, the timeout as 3 minutes, and the relative tolerance
as 10−4. Static boundary conditions are assumed. As for
programs, methods from the Proposed? and Mellinger are both
implemented in C++11 with a single thread for sequential
computing. The general-purpose solver [24] is directly adopted
for Patterson?. A C++11 re-implementation of the original
MATLAB one [30] is adopted for both Deits? and Deits.
Methods from Gao?, Tordesillas?, and Sun? are taken from
their open-source implementations. Besides, the commercial
solver Gurobi [66] is used by Deits?, Deits, and Tordesillas?

with 6 threads enabled for parallel computing. The commercial
solver MOSEK [67] is used by both Gao? and Sun?.

The computation efficiency is provided in Fig. 10. Clearly,
Deits? and Tordesillas? have to optimize integer variables,
thus possessing approximately exponential complexity as MP
grows. Nonetheless, Tordesillas? achieves acceptable perfor-
mance for small MP by using a more conservative but easier
constraints than Deits?. Methods from Deits and Mellinger
achieve satisfactory performance by tackling time allocation or
interval allocation heuristically. Methods from Gao? and Sun?

performs well in their scalability while the overhead for small
MP does not suit real-time applications. The method from
Patterson? suits offline scenarios where computation time is
far less important than solution quality. The Proposed? method
improves the speed by more than an order of magnitude, while
retaining optimization on time allocation.

The geometrical profile of trajectories is provided in Fig. 11.
Methods that do not optimize time or interval allocation are
more likely to deviate from the ground truth. Trajectories by
Deits? and Tordesillas? also deviate a lot from the ground

15

(a) Hardware settings of the vehicle. (b) An onboard camera image.

Fig. 14. Left: Our autonomous multicopter equipped with an onboard
computer and a LiDAR. Right: A snapshot of the first person view during
our high-speed flight experiment in a garage.

truth because of the limited resolution of intervals. The success
rates, relative control effort, and flight durations are all given
in Fig. 12. Interval allocation based methods have relatively
low success rates. All control effort are normalized by that of
the Proposed? one, whose total time is fixed accordingly for
fairness. Clearly, heuristic time or interval allocation causes
relatively high control effort. Besides, the flight duration from
the Proposed? method is the closest to the ground truth.

To explore the temporal profile, we also test four complete
methods in a long-distance flight as shown in Fig. 13. The
trajectory from Gao? is less aggressive than the others. The
trajectory from Tordesillas? has discontinuous jerk since 3-
degree polynomials are used. The results from the Proposed?

one have nearly the same quality as the ground truth. Profiting
from the effectiveness of the penalty functional, our method
can also achieve the maximum speed persistently.

In simulations, our method achieves comparable trajectory
quality to the collocation based method [24] in both the
geometrical and temporal profile, while having superior com-
putational speed against all benchmarked ones.

We conduct experimental validation of our framework by
enabling high-speed autonomous flights of a multicopter in an
underground garage. All computations are performed by an
onboard computer with an Intel Core i7-8550U CPU, which is
shown in Fig. 14. We utilize FAST-LIO2 [68] for highly robust
LiDAR-based localization. Polyhedron-shaped safe flight cor-
ridors are generated by following [31]. Our method generates
a 343.57m global trajectory in only 0.29s in the first track.
The planning results are provided in Fig. 1(c). We believe
this computation time validates our framework’s efficiency
even for long-distance trajectory planning. In this experiment,
the vehicle speed reaches 12.0m/s while ensuring its safety
among obstacles and keeping a low thrust-to-weight ratio. We
further compare planning results for different parameters on
vmax. It turns out that our method can always squeeze the
capability of vmax and amax if kρ is large. More details about
this experiment are given in the attached multimedia.

C. SE(3) Motion Planning in Quotient Space

In dense obstacle environments, safe motions often do not
exist for narrow spaces unless a multicopter agilely adjusts
its attitude to avoid collisions. Therefore, we consider SE(3)
motion planning in our framework. An important property for

planning in SE(3) as a manifold with structure R3×SO(3) is
the necessary condition that a feasible pose for a rigid body at
least contains a feasible translation for a dimensionless point.
The subspace R3 is referred to as a Quotient Space [69]. Ex-
ploiting such a quotient-space decomposition [70], we consider
the rotational safety based on a translational trajectory, instead
of handling them jointly. Therefore, we can relax assumptions
for (14) such that F̃ is just a free region in the quotient space
without considering multicopter’s actual size.

We consider simplified quadcopter dynamics whose config-
uration is defined by its translation p and rotation R:

ṗ = v,

m̄v̇ = −m̄ḡe3 + Rf̃ e3,

Ṙ = Rω̂.

(93)

where ei is the i-th column of I3, ḡ the gravitational acceler-
ation, f̃ the thrust, ω the body rate input, and m̄ the vehicle
mass. The hat map ·̂ : R3 7→ R3×3 is defined by âb = a×b for
all a, b ∈ R3. Moreover, we model the geometrical shape of a
symmetric multicopter as its outer Löwner-John ellipsoid [37],

E(t) =
{
R(t)Qx+ p(t)

∣∣∣ ‖x‖2 ≤ 1
}

(94)

where Q = Diag{re, re, he}. re and he are the radius and the
height of multicopter, respectively.

A feasible motion satisfies the safety and dynamic limits.
By safety we mean E(t) ⊂ F̃ , ∀t ∈ [0, T], where T is the
total time of the motion. However, this safety constraint is
indeed hard to enforce. We further make an assumption on
F that all PHi or their intersections are able to contain at
least one ellipsoid of the multicopter. This assumption can be
reasonably satisfied when F̃ is generated incrementally. As a
result, we can ensure safety through

∀t ∈ [0, T], ∃1 ≤ i ≤Mp, s.t . E(t) ⊂ PHi . (95)

By dynamic limits we mean the velocity, thrust and body rate
should have reasonable magnitude,

‖p(1)(t)‖2 ≤ v2
max, ∀t ∈ [0, T],

fmin ≤ f̃(t) ≤ fmax, ∀t ∈ [0, T],

‖ω(t)‖22 ≤ ω2
max, ∀t ∈ [0, T].

(96)

Given a quotient-space trajectory p(t) : [0, T] 7→ R3, state-
control trajectories of p, v, R, and ω are all algebraically
computed by flatness maps Ψx and Ψu of the dynamics (93).
The concrete forms of the algebraic maps are detailed in [11]
with fixes on the body rate [14] for simple quadcopters thus are
omitted here. Consequently, the entire SE(3) trajectory is also
obtained. Denote by R(t) its rotational part. To generate p(t)
in F̃ , we follow the methodology of our previous experiment
but with different constraints here.

The i-th trajectory piece pi(t) : [0, Ti] 7→ R3 is assigned to
the polytope PHj defined in (17) with j = di/Ke. We denote
by Ei(t) the ellipsoid induced by pi(t) and the corresponding
Ri(t) as is defined in (94). As proposed by Wu et. al. [71],
ensuring safety by confining the vehicle ellipsoid in a polyhe-
dron also has an analytical form. Specifically,

Ei(t) ∈ PHj , j = di/Ke, ∀t ∈ [0, Ti], (97)

16

(a) SFC layout (b) φgap = 30◦ (c) φgap = 45◦ (d) φgap = 60◦ (e) φgap = 75◦ (f) φgap = 85◦

 (g) The magnitude of angular velocity and the normalized thrust for different SE(3) trajectories.

Fig. 15. SFC layout for a narrow gap, SE(3) trajectories under different widths of gaps, and control inputs for different motions. As the gap becomes
narrower, larger angular rates and higher thrust are needed for a safe flight. The proposed method persistently enforces limits on these control inputs under
different settings while retains millisecond-level computation time.

is equivalent to[
[AjRi(t)Q]21

] 1
2 +Ajpi(t)− bj � 0, (98a)

j = di/Ke, ∀t ∈ [0, Ti], (98b)

where 1 is an all-ones vector with an appropriate length, [·]2
and [·] 1

2 are entry-wise square and square root, respectively.
Finally, we obtained the state-control constraint GD in (8) for
the considered dynamics in (93). We choose to minimize s = 3
because it is the highest derivative order for flatness of (93)
and also helpful in smoothing the angular rate.

We validate our framework in simulations where a relatively
large quadcopter is required to fly through a narrow gap with
much smaller width as shown in Fig. 15. The settings are
re = 0.5m, he = 0.1m, fmin/m̄ = 5.0m/s2, fmax/m̄ =
18.5m/s2, vmax = 6.5m/s, and ωmax = 5.2rad/s. In-
tuitively, the quadcopter can only achieve no more than 1
revolution per second (rps), making it less agile than small
quadcopters [72] that can achieve 5rps. The computation
times, required roll angles, and SE(3) motions for different
dgap are shown in the Table I and Fig. 15(b)-15(f).

TABLE I
COMPUTATION TIMES AND ROLL ANGLES FOR DIFFERENT GAPS

dgap 0.88m 0.76m 0.60m 0.40m 0.25m
φgap 30◦ 45◦ 60◦ 75◦ 85◦

tcomp. 4.7ms 4.4ms 6.0ms 6.6ms 7.4ms

As the gap becomes narrower, the required roll angle
becomes larger and the feasible space becomes smaller in
view of dynamic limits. Our method is still able to find all

the feasible motions. The superior computation speed makes it
possible to solving SE(3) planning at a high frequency (at least
100Hz). Constraint functions are visualized in Fig. 15(g). The
body rate and thrust satisfy dynamic limits all the time. The
continuous-time tightness of fmin for φgap ∈ {60◦, 75◦, 85◦}
shows the effectiveness of our penalty functional.

(a) The custom-made quadcopter. (b) The window.

Fig. 16. Sizes of the quadcopter and the narrow window.

We evaluate the performance of our planner in a real-world
experiment where a quadcopter flies through several narrow
windows. Sizes of the quadcopter and windows are given in
Fig. 16. The quadcopter weights 794.2g. The safety margin of
the short side is only 5.4cm, implying that the feasible motion
space is extremely small. The settings are re = 20.0cm, he =
4.6cm, vmax = 4.0m/s, fmin/m̄ = 3.0m/s2, fmax/m̄ =
18.0m/s2, ωmax = 6.0rad/s, and K = 2. The flying space
is a restricted volume of 6.5 × 6.0 × 2.0m3. All poses of
narrow windows and the quadcopter are provided by a motion

17

(a) The interactive scenario. (b) Flying through two consecutive windows. (c) Flying through three consecutive windows.

(d) SE(3) planning for two windows. (e) SE(3) planning for three windows.

Fig. 17. Experiment results for three SE(3) planning scenarios. The Fig. 17(a) gives a snapshot for the interactive scenario. Fig. 17(b)-17(c) show two
snapshots for real flights through consecutive windows. Fig. 17(d)-17(e) show corresponding SE(3) trajectories generated by the proposed method.

capture system running at 100Hz. The obstacle-free region
F̃ is geometrically computed for multiple narrow windows in
the free volume. The planner is run on an offboard computer
where a human operator arbitrarily chooses the goal position.
We adopt the control algorithm by Faessler et al. [14] for
onboard SE(3) trajectory tracking.

The first scenario contains consecutive windows with roll
angles ranging from 30◦ to 90◦. The quadcopter has to fly
through them and reach a randomly selected goal as shown
in Fig. 17(b)-17(e). The second scenario is an interactive one
where a human operator randomly holds a narrow window for
real-time planning as given in Fig. 17(a). The third scenario
requires the quadcopter persistently fly back and forth through
multiple windows for a long duration as shown in Fig. 1(b)
and Fig. 1(d). Our planner guides the quadcopter to fly back
and forth through windows for about 20.0s while ensuring the
safety and physical limits all the time. More details about this
experiment are given in the attached multimedia.

In this experiment, the short distance between consecutive
windows, the small acceleration/deceleration space, and the
limited vehicle maneuverability are challenges that our planner
must confront. We believe that these results constitute a strong
evidence for its constraint fidelity, motion quality, computation
efficiency, and robustness. However, we do observe the limita-
tion of optimization-based methods. For example, if two 90◦

windows are asymmetrically placed, a multicopter has to pass
them in sequence. Each window only allows two roll angles
±90◦. The combinations are 4 locally optimal maneuvers but
only one can be the global optimum. Thus, the other three are
shallow local minima inevitable for local methods.

VII. DISCUSSION AND CONCLUSION

A. Extensions
Profiting from the flexibility and efficiency, our framework

has many applicative and algorithmic extensions. First, no as-
sumption is ever made on concrete forms of vehicle dynamics

and GD. More accurate dynamics such as the rotor drag [14]
can be adopted to fully exploit physical limits via real-time
high-fidelity planning and control. Time-dependent constraints
for moving obstacles can also be supported by GD. Second,
our framework is inherently parallelizable to further squeeze
its performance. Computation-demanding operations on IG [p]
are independent at each timestamp, thus parallelization can
effectively speedup our optimization. Moreover, it is possible
to extend our methodology to other vehicle types whose flat-
output space overlaps the configuration space. An example
is the fixed-wing aircraft in [28] whose flights are mainly
restricted by the trajectory curvature. Bry et al. propose
Dubins–Polynomial trajectories [28] for this restriction while
the curvature constraint is a special case of G for MINCO.

To demonstrate the extendibility, we apply our framework to
a swarm of multicopters to enable their autonomous navigation
in unknown environments. All details of the formulation (11)
and real-world flights are given in a technical report [73].

B. Limitations
Our framework, like most optimization-based ones, focuses

on local solutions of trajectory planning, thus suffering from
shallow local minima. This can be alleviated by interleav-
ing sampling-based or graph-search-based strategies into our
framework, as proposed in [74]–[76]. A major limitation of the
framework originates from MINCO itself. If G exist, optimal
solutions cannot in general be represented by polynomial
splines, let alone MINCO. Thus optimizing MINCO is just
a relaxation to the original problem. However, our results
show that MINCO can still represent high-quality solutions
comparable to the ground truth, but with several orders of
magnitudes faster computing. There are also limitations caused
by the penalty functional. To achieve zero constraint viola-
tions, an unbounded smoothing factor or penalty weight and
an unbounded quadrature resolution are both required. How-
ever, small constraint violations are empirically acceptable for

18

multicopter navigation. As a reward, this method does not need
initial feasible guesses.

C. Conclusion

In this article, we proposed a flexible multicopter trajectory
planning framework powered by several core features, such
as the MINCO trajectory based on our optimality conditions,
constraint elimination schemes based on smooth maps, the
penalty functional method based on constraint transcription,
and the backward differentiation of the flatness maps from
flat outputs. All these components enjoy the efficiency and
generality originating from low complexity and less pre-
liminary assumptions. We performed extensive benchmarks
against many kinds of multicopter trajectory planning methods
to show the speedup over orders of magnitude and the top-
level solution quality. A variety of applications demonstrated
the versatility of our framework. We also presented further
discussions about several unlisted applications or extensions
as future work.

VIII. ACKNOWLEDGMENT

The authors would like to thank Shaohui Yang for his
profound insight into the experiment design and applications
of this framework, Hongkai Ye and Yuwei Wu for their help
in the benchmark, and Yuman Gao, Tiankai Yang, and Neng
Pan for the hardware platform for high-speed flights.

APPENDIX

A. Proof of Sufficiency in Theorem 2

Proof. We consider the space of M -piece polynomial 2s-order
splines defined over [t0, tM] where consecutive pieces on any
x : [t0, tM] 7→ R satisfy x

(j)
i−1(ti) = x

(j)
i (ti) for 0 ≤ j <

d̄i and 1 ≤ i < M . In (18), di ≤ s holds for each i. For
brevity, we define Di,j as Di,j = i · s+

∑j
k=1 dk. According

to Theorem 4.4 in [77], this spline space is actually a linear
space of dimension D̄ = D2,M−1.

Moreover, an explicit basis of the space exists. Based on the
original partition t0 < t1 < · · · < tM , we define an extended
partition t̄1 ≤ t̄2 ≤ · · · ≤ t̄M̄ of length M̄ = D4,M−1 as

t̄i =

t0 if 1 ≤ i ≤ D2,0,

tj if D2,j−1 < i ≤ D2,j ,

tM if D2,M−1 < i ≤ M̄.

(99)

Based on this extended partition, Theorem 4.9 in [77] explic-
itly constructs D̄ functions {Bi(t) : [t0, tM] 7→ R}D̄i=1 which
form a basis for the considered spline space.

Now we consider (18c) and (18d) in the spanned linear
space. These conditions specify derivative values on times-
tamps of the original partition to be interpolated by the basis
{Bi(t)}D̄i=1. We only needs the specified orders along with
their timestamps instead of the specified derivative values.
Denote by τi the i-th specified timestamps, where

τi =

t0 if 1 ≤ i ≤ D1,0,

tj if D1,j−1 < i ≤ D1,j ,

tM if D1,M−1 < i ≤ D̄.
(100)

Denote by νi the specified order at τi, written as

νi =

i− 1 if 1 ≤ i ≤ D1,0,

i− 1−D1,j−1 if D1,j−1 < i ≤ D1,j ,

i− 1−D1,M−1 if D1,M−1 < i ≤ D̄.
(101)

Then, the conditions (18c) and (18d) generate a linear equation
system on the basis, whose coefficient matrix is

B =

B

(ν1)
1 (τ1) B

(ν1)
2 (τ1) · · · B

(ν1)

D̄
(τ1)

B
(ν2)
1 (τ2) B

(ν2)
2 (τ2) · · · B

(ν2)

D̄
(τ2)

...
...

. . .
...

B
(νD̄)
1 (τD̄) B

(νD̄)
2 (τD̄) · · · B

(νD̄)

D̄
(τD̄)

 . (102)

It is obvious that B is a square matrix for any possible solution
to Theorem 2 in each dimension.

According to Theorem 4.67 in [77], B is nonsingular if and
only if

τi ∈ δi =

{
[t̄i, t̄i+2s) if νi + αi − 2s ≥ 0,

(t̄i, t̄i+2s) if νi + αi − 2s < 0,
(103)

holds for any i = 1, . . . , D̄, where αi is defined as

αi = {max j : t̄i = · · · = t̄i+j−1}. (104)

We show that (103) is always true in our case. It is obvious
that αi can be computed as

αi =

{
D2,0 − i+ 1 if 1 ≤ i ≤ D2,0,

D2,j − i+ 1 if D2,j−1 < i ≤ D2,j .
(105)

Combining (101) and (105), we know that νi < s and αi ≤ s
always hold for i > s, which means{

νi + αi − 2s = 0 if 1 ≤ i ≤ s,
νi + αi − 2s < 0 if s < i ≤ D̄.

(106)

Thus, the interval δi is computed as

δi =

{
[t̄i, t̄i+2s) if 1 ≤ i ≤ s,
(t̄i, t̄i+2s) if s < i ≤ D̄.

(107)

Consequently, we have

τi = t0 ∈ [t0, t1) ⊆ [t̄i, t̄i+2s) = δi, 1 ≤ i ≤ s. (108)

When i > s, we denote t̄i = tk, t̄i+2s = tl and τi = tj . As is
shown in (99) and (100), we have

D2,k−1 < i, (i+ 2s) ≤ D2,l, D1,j−1 < i ≤ D1,j . (109)

Due to the fact that di ≤ s holds for any 1 ≤ i < M , the
following two inequalities always hold.

D2,k−1 < i ≤ D1,j = (D2,j − s) ≤ D2,j−1, (110)

D2,j = (D1,j+s) ≤ (D1,j−1 +2s) < (i+2s) ≤ D2,l. (111)

Inequalities (110) and (111) imply k < j and j < l, thus

τi = tj ∈ (tk, tl) = (t̄i, t̄i+2s) = δi, s < i ≤ D̄, (112)

always holds. Combining (108) and (112) gives (103). There-
fore, the coefficient matrix B on basis is always nonsingular
for settings on the original problem, implying the existence
and uniqueness of solution.

The optimality conditions guarantee one unique solution in
each decoupled dimension, which gives its sufficiency.

19

B. Proof of Proposition 2

Proof. Denote by J the Jacobian of G. For any x ∈ DF and
y ∈ RN , satisfying x = G(y) or y = G−1(x), we have

∇H(y) = J(y)T∇F (x). (113)

Then, the nonsingularity of J implies that the first statement
always holds. Denote by Ki the Hessian of the i-th entry in
G. If x and y are stationary points, the Hessian of H is

∇2H(y) = J(y)T∇2F (x)J(y) +

N∑
i=1

∂F (x)

∂xi
Ki(y)

= J(y)T∇2F (x)J(y). (114)

Then, the nonsingular J implies that ∇2F (x) and ∇2H(y)
are congruent [45]. Thus the second statement holds.

REFERENCES

[1] M. Ryll, J. Ware, J. Carter, and N. Roy, “Efficient trajectory planning
for high speed flight in unknown environments,” in IEEE International
Conference on Robotics and Automation, Montreal, Canada, 2019, pp.
732–738.

[2] H. Oleynikova, C. Lanegger, Z. Taylor, M. Pantic, A. Millane, R. Sieg-
wart, and J. Nieto, “An open-source system for vision-based micro-aerial
vehicle mapping, planning, and flight in cluttered environments,” Journal
of Field Robotics, vol. 37, no. 4, pp. 642–666, 2020.

[3] J. Zhang, C. Hu, R. G. Chadha, and S. Singh, “Falco: Fast likelihood-
based collision avoidance with extension to human-guided navigation,”
Journal of Field Robotics, vol. 37, no. 8, pp. 1300–1313, 2020.

[4] L. Campos-Macı́as, R. Aldana-López, R. de la Guardia, J. I. Parra-
Vilchis, and D. Gómez-Gutiérrez, “Autonomous navigation of mavs in
unknown cluttered environments,” Journal of Field Robotics, vol. 38,
no. 2, pp. 307–326, 2021.

[5] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “EGO-Planner: An ESDF-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 478–485, 2021.

[6] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “AlphaPilot: Autonomous drone
racing,” Autonomous Robots, pp. 1–14, 2021.

[7] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect
of non-linear systems: Introductory theory and examples,” International
Journal of Control, vol. 61, no. 6, pp. 1327–1361, 1995.

[8] M. J. Van Nieuwstadt and R. M. Murray, “Real-time trajectory genera-
tion for differentially flat systems,” International Journal of Robust and
Nonlinear Control, vol. 8, no. 11, pp. 995–1020, 1998.

[9] P. Martin, R. M. Murray, and P. Rouchon, “Flat systems, equivalence
and trajectory generation,” California Institute of Technology, Pasadena,
Calif, USA, Tech. Rep. CDS 2003-008, 2003.

[10] J.-C. Ryu and S. K. Agrawal, “Differential flatness-based robust control
of mobile robots in the presence of slip,” The International Journal of
Robotics Research, vol. 30, no. 4, pp. 463–475, 2011.

[11] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE International Conference on Robotics
and Automation, Shanghai, China, May 2011, pp. 2520–2525.

[12] M. Watterson and V. Kumar, “Control of quadrotors using the Hopf
fibration on SO(3),” in International Symposium on Robotics Research,
Hanoi, Vietnam, 2019.

[13] J. Ferrin, R. Leishman, R. Beard, and T. McLain, “Differential flatness
based control of a rotorcraft for aggressive maneuvers,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Fran-
cisco, USA, 2011, pp. 2688–2693.

[14] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of
quadrotor dynamics subject to rotor drag for accurate tracking of high-
speed trajectories,” IEEE Robotics and Automation Letters, vol. 3, no. 2,
pp. 620–626, 2018.

[15] B. Mu and P. Chirarattananon, “Trajectory generation for underactuated
multirotor vehicles with tilted propellers via a flatness-based method,” in
IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics, 2019, pp. 1365–1370.

[16] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[17] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Iowa State University, Tech. Rep. TR 98-11, 1998.

[18] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis
of probabilistic roadmaps for path planning,” IEEE Transactions on
Robotics and Automation, vol. 14, no. 1, pp. 166–171, 1998.

[19] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, pp. 846–894, 2011.

[20] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast Marching
Tree: A fast marching sampling-based method for optimal motion
planning in many dimensions,” The International Journal of Robotics
Research, vol. 34, no. 7, pp. 883–921, 2015.

[21] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-
based kinodynamic planning,” The International Journal of Robotics
Research, vol. 35, no. 5, pp. 528–564, 2016.

[22] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Informed sam-
pling for asymptotically optimal path planning,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 966–984, 2018.

[23] J. T. Betts, Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming. SIAM, 2010.

[24] M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB software for
solving multiple-phase optimal control problems using hp-adaptive gaus-
sian quadrature collocation methods and sparse nonlinear programming,”
ACM Transactions on Mathematical Software, vol. 41, no. 1, pp. 1–37,
2014.

[25] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit—an open-
source framework for automatic control and dynamic optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298–
312, 2011.

[26] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm
for large-scale constrained optimization,” SIAM Review, vol. 47, no. 1,
pp. 99–131, 2005.

[27] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[28] A. Bry, C. Richter, A. Bachrach, and N. Roy, “Aggressive flight of
fixed-wing and quadrotor aircraft in dense indoor environments,” The
International Journal of Robotics Research, vol. 34, no. 7, pp. 969–
1002, 2015.

[29] A. J. Barry, T. Jenks, A. Majumdar, H.-T. Lin, I. G. Ros, A. A. Biewener,
and R. Tedrake, “Flying between obstacles with an autonomous knife-
edge maneuver,” in IEEE International Conference on Robotics and
Automation, Hong Kong, China, 2014, pp. 2559–2559.

[30] R. Deits and R. Tedrake, “Efficient mixed-integer planning for UAVs in
cluttered environments,” in IEEE International Conference on Robotics
and Automation, Seattle, USA, 2015, pp. 42–49.

[31] F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen, “Teach-Repeat-
Replan: A complete and robust system for aggressive flight in complex
environments,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1526–
1545, 2020.

[32] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex optimization
approach,” IEEE Transactions on Automatic Control, vol. 54, no. 10, pp.
2318–2327, 2009.

[33] J. Tordesillas, B. T. Lopez, and J. P. How, “FASTER: Fast and safe
trajectory planner for flights in unknown environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, Macau,
China, 2019, pp. 1934–1940.

[34] J. Tordesillas and J. P. How, “MINVO Basis: Finding simplexes
with minimum volume enclosing polynomial curves,” arXiv preprint
arXiv:2010.10726, 2020.

[35] W. Sun, G. Tang, and K. Hauser, “Fast UAV trajectory optimization us-
ing bilevel optimization with analytical gradients,” in American Control
Conference, 2020, pp. 82–87.

[36] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena-
Scientific, 1995.

[37] C. D. Toth, J. O’Rourke, and J. E. Goodman, Handbook of Discrete and
Computational Geometry. CRC Press, 2017.

[38] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor,
and V. Kumar, “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-D complex environments,” IEEE Robotics
and Automation Letters, pp. 1688–1695, 2017.

20

[39] E. Verriest and F. Lewis, “On the linear quadratic minimum-time
problem,” IEEE Transactions on Automatic Control, vol. 36, no. 7, pp.
859–863, 1991.

[40] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally ef-
ficient motion primitive for quadrocopter trajectory generation,” IEEE
Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[41] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vancouver, Canada, 2017, pp. 2872–2879.

[42] Z. Zhang, J. Tomlinson, and C. Martin, “Splines and linear control
theory,” Acta Applicandae Mathematica, vol. 49, no. 1, pp. 1–34, 1997.

[43] M. Egerstedt and C. Martin, Control Theoretic Splines: Optimal Control,
Statistics, and Path planning. Princeton University Press, 2009.

[44] A. V. Dmitruk and A. M. Kaganovich, “The hybrid maximum principle
is a consequence of pontryagin maximum principle,” Systems & Control
Letters, vol. 57, no. 11, pp. 964–970, 2008.

[45] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 2012.

[46] G. H. Golub and F. V. Loan, Matrix Computations. The Johns Hopkins
University Press, 2013.

[47] Z. Zhang and D. Scaramuzza, “Perception-aware receding horizon
navigation for MAVs,” in IEEE International Conference on Robotics
and Automation, Brisbane, Australia, 2018, pp. 2534–2541.

[48] T. Nägeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges, “Real-
time motion planning for aerial videography with dynamic obstacle
avoidance and viewpoint optimization,” IEEE Robotics and Automation
Letters, vol. 2, no. 3, pp. 1696–1703, 2017.

[49] J. Nocedal and S. Wright, Numerical Optimization. Springer, 2006.
[50] J. Lee, Introduction to Smooth Manifolds. Springer, 2012.
[51] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm

for convex hulls,” ACM Transactions on Mathematical Software, vol. 22,
no. 4, pp. 469–483, 1996.

[52] R. Seidel, “Small-dimensional linear programming and convex hulls
made easy,” Discrete & Computational Geometry, vol. 6, no. 3, pp.
423–434, 1991.

[53] F. S. Sisser, “Elimination of bounds in optimization problems by
transforming variables,” Mathematical Programming, vol. 20, no. 1, pp.
110–121, 1981.

[54] J. Warren, S. Schaefer, A. N. Hirani, and M. Desbrun, “Barycentric
coordinates for convex sets,” Advances in Computational Mathematics,
vol. 27, no. 3, pp. 319–338, 2007.

[55] D. P. Bertsekas, Nonlinear Programming. Athena-Scientific, 2016.
[56] L. S. Jennings and K. L. Teo, “A computational algorithm for functional

inequality constrained optimization problems,” Automatica, vol. 26,
no. 2, pp. 371–375, 1990.

[57] A. Griewank and A. Walther, Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. SIAM, 2008.

[58] W. Baur and V. Strassen, “The complexity of partial derivatives,”
Theoretical Computer Science, vol. 22, no. 3, pp. 317–330, 1983.

[59] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for
large scale optimization,” Mathematical Programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[60] D. Burke, A. Chapman, and I. Shames, “Generating minimum-snap
quadrotor trajectories really fast,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Las Vegas, USA, 2020, pp. 1487–
1492.

[61] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, pp. 1–36, 2020.

[62] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. Liu,
“A supernodal approach to sparse partial pivoting,” SIAM Journal on
Matrix Analysis and Applications, vol. 20, no. 3, pp. 720–755, 1999.

[63] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 856–869, 2018.

[64] F. Gao, W. Wu, W. Gao, and S. Shen, “Flying on Point Clouds:
Online trajectory generation and autonomous navigation for quadrotors
in cluttered environments,” Journal of Field Robotics, vol. 36, no. 4, pp.
710–733, 2019.

[65] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-
free space through semidefinite programming,” in Algorithmic Founda-
tions of Robotics XI. Springer, 2015, pp. 109–124.

[66] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2020. [Online]. Available: https://www.gurobi.com

[67] MOSEK Aps, “MOSEK Optimizer API for C,” 2020. [Online].
Available: https://www.mosek.com

[68] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “FAST-LIO2: Fast direct
lidar-inertial odometry,” IEEE Transactions on Robotics, pp. 1–21, 2022.

[69] A. Orthey and M. Toussaint, “Rapidly-exploring quotient-space trees:
Motion planning using sequential simplifications,” in International Sym-
posium on Robotics Research, Hanoi, Vietnam, 2019.

[70] A. Orthey, A. Escande, and E. Yoshida, “Quotient-space motion plan-
ning,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, Madrid, Spain, 2018, pp. 8089–8096.

[71] Y. Wu, Z. Ding, C. Xu, and F. Gao, “External forces resilient safe motion
planning for quadrotor,” IEEE Robotics and Automation Letters, vol. 6,
no. 4, pp. 8506–8513, 2021.

[72] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a
swarm of agile micro quadrotors,” Autonomous Robots, vol. 35, no. 4,
pp. 287–300, 2013.

[73] X. Zhou, Z. Wang, X. Wen, J. Zhu, C. Xu, and F. Gao, “Decentralized
spatial-temporal trajectory planning for multicopter swarms,” arXiv
preprint arXiv:2106.12481, 2021.

[74] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant
hamiltonian optimization for motion planning,” The International Jour-
nal of Robotics Research, vol. 32, no. 9, pp. 1164–1193, 2013.

[75] L. Campos-Macı́as, D. Gómez-Gutiérrez, R. Aldana-López, R. de la
Guardia, and J. I. Parra-Vilchis, “A hybrid method for online trajectory
planning of mobile robots in cluttered environments,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, pp. 935–942, 2017.

[76] R. Natarajan, H. Choset, and M. Likhachev, “Interleaving graph search
and trajectory optimization for aggressive quadrotor flight,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 5357–5364, 2021.

[77] L. Schumaker, Spline Functions: Basic Theory. Cambridge University
Press, 2007.

Zhepei Wang received the B.Eng. degree in control
science and engineering from Zhejiang University,
Hangzhou, China, in 2017.

He is currently working toward the Ph.D. degree
in control science and engineering from Zhejiang
University, Hangzhou, China. His research interests
include motion planning, discrete and computational
geometry, numerical optimization, and autonomous
navigation of unmanned vehicles.

Xin Zhou received the B.Eng. degree in electrical
engineering and automation from China University
of Mining and Technology, Xuzhou, China, in 2019.

He is currently working toward the Ph.D. degree
in control engineering from Zhejiang University,
Hangzhou, China. His research interests include mo-
tion planning and mapping for aerial swarm robotics.

Chao Xu received the Ph.D. degree in mechanical
engineering from Lehigh University, Bethlehem, PA,
USA, in 2010.

He is the Professor of Cyber-Systems & Robotics,
the Associate Dean of the College of Control Sci-
ence and Engineering, and the Founding Dean of
Huzhou Institute of Zhejiang University. He founded
the FAST (Field Autonomous System and Comput-
ing) Lab. His research interests are robot mechanics
and control. He is currently the Managing-Editor for
the Journal of Industrial and Management Optimiza-

tion, and the Founding Managing-Editor for IET Cyber-Systems & Robotics.

Fei Gao received the Ph.D. degree in electronic
and computer engineering from the Hong Kong
University of Science and Technology, Hong Kong,
in 2019.

He is currently an Assistant Professor with the
College of Control Science and Engineering, Zhe-
jiang University, where he co-directs the FAST
(Field Autonomous System and Computing) Lab
and leads the FAR (Flying Autonomous Robotics)
Group. His research interests include aerial robots,
swarms, autonomous navigation, motion planning,

and localization and mapping.

https://www.gurobi.com
https://www.mosek.com

	Introduction
	Related Work
	Differentially Flat Multicopters
	Sampling-Based Motion Planning
	Optimization-Based Motion Planning

	Preliminaries
	Differential Flatness
	Direct Optimization in Flat-Output Space
	Problem Formulation

	Multi-Stage Control Effort Minimization
	Unconstrained Control Effort Minimization
	Optimality Conditions
	Minimization Without Cost Functional
	MINCO Trajectories With Spatial-Temporal Deformation

	Geometrically Constrained Flight Trajectory Optimization
	Temporal Constraint Elimination
	Spherical Spatial Constraint Elimination
	Polyhedral Spatial Constraint Elimination
	Time Integral Penalty Functional
	Trajectory Optimization via Unconstrained NLP

	Applications
	Large-Scale Unconstrained Control Effort Minimization
	Trajectory Generation Within Safe Flight Corridors
	SE(3) Motion Planning in Quotient Space

	Discussion and Conclusion
	Extensions
	Limitations
	Conclusion

	Acknowledgment
	Appendix
	Proof of Sufficiency in Theorem 2
	Proof of Proposition 2

	References
	Biographies
	Zhepei Wang
	Xin Zhou
	Chao Xu
	Fei Gao

