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Hierarchical Decision and Control for Continuous
Multitarget Problem: Policy Evaluation

With Action Delay
Jiangcheng Zhu , Jun Zhu, Zhepei Wang, Shan Guo, and Chao Xu

Abstract— This paper proposes a hierarchical decision-making
and control algorithm for the shepherd game, the seventh mission
in the International Aerial Robotics Competition (IARC). In this
game, the agent (a multirotor aerial robot) is required to contact
targets (ground vehicles) sequentially and drive them to a certain
boundary to earn score. During the game of 10 min, the agent
should be fully autonomous without any human interference.
Regarding the lower-level controller and dynamics of the agent,
each action takes a duration of time to accomplish. Denoted as an
action delay, in this paper, this action duration is nonconstant and
is related to the final reward. Therefore, the challenging point is
making the agent “aware of time” when applying a certain action.
We solve this problem by two approaches: deep Q-networks and
lookup table. The action delay predictor in the decision-level
is fitted by a lower-level controller. Through simulations by the
example of the shepherd game, the effectiveness and efficiency of
this approach are validated. This paper helps our team winning
the first prize in IARC 2017, and keeps the best record of this
mission since it was released in 2013.

Index Terms— Deep reinforcement learning (RL), Monte Carlo
sampling, policy evaluation.

I. INTRODUCTION

NOWADAYS, learning to control a robotic system via
machine learning is a hot topic in artificial intelligence.

Reinforcement learning (RL), also called adaptive dynamic
programming (DP), is closely related to optimal feedback
control in both the formulation and solution method [1]–[5].
These RL studies on optimal control focus on the value
iteration and policy iteration regard on the reward function
as linear quadratic regulator.

A new trend of RL controller is end-to-end. Exploiting
the new tools developed in deep learning, the state-of-
the-art RL controller processes raw sensory input and
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Fig. 1. IARC shepherd game.

observed rewards, and generates actuator signal in an
end-to-end neural network. Some typical algorithms are
deep Q-networks (DQNs) [6], [7], deep deterministic policy
gradient [8], trust region policy optimization [9], and proximal
policy optimization [10].

Contrasting to the end-to-end trend, robotics often has
a hierarchical decision and control system. In the field of
robotics, there are several studies that propose training a con-
troller by learning approaches [11]–[15]. However, in many
cases, classic controllers still dominate for their guaranteed
performance. On the other hand, real environments are usu-
ally dimension explosive for end-to-end learning algorithms.
Therefore, applying learning algorithm in high-level decision-
making with low-level classic controllers is a practical option.

Different from discrete problems (see AlphaGo [16]) and
continuous problems which can be discretized with con-
stant time resolution (e.g., aerobatic helicopter [17], [18]),
RL applied for decision-making for robotic system has a major
difference, that one action takes a duration of time to finish.
Specifically in time-sensitive tasks, the action duration may
influence the final reward. The game is such a problem with
hierarchical structure of high-level decision-making (discrete)
and low-level controller (continuous), as shown in Fig. 1.
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The major contribution of this paper is to formulate this kind
of problems as an RL framework. We design an instant reward
that absorbs the action delay. Therefore, the action delay is
independent of the RL level, and only be applied in the process
to generate instant reward. We show that the action delay is
a function of state and action, and apply it for instant reward
generator.

We organize the rest of this paper as follows. Section II
describes the motivation: the shepherd game. Section IV
presents the problem formulation. Section V introduces two
approaches to solve this problem: DQN and lookup table
(LUT). Section VI introduces the instant reward generator and
action delay predictor. Section VII provides some simulation
results. Conclusion and discussion are drawn in Section VIII.

II. MOTIVATION

We first state briefly the background of the International
Aerial Robotics Competition (IARC) mission 7, which is
called the “Shepherd mission.” On a competition area of
20 m×20 m, or it is the analogy of “grassland” corresponding
to the “shepherd mission.” On the competition arena, there are
three parties of players, including a drone, 10 ground mobile
robots, and four mobile obstacles, which represent “shepherd
dog,” “sheep,” and “wolves” in this robotic game, respectively.

The robotic game imitates the actual shepherding process
to some extent. First, the drone (or the shepherd dog) should
be able to avoid collision autonomously with four mobile
obstacles (or wolves). Second, there are two ways to change
the moving direction of each ground mobile robot; one way
is to land the drone in front of a ground mobile robot, then it
makes a U-turn; the other way is to fly the drone physically
touch the top of a ground mobile robot, then it makes a turn
of π/4 to the right or left direction randomly. In addition,
each ground mobile robot also makes a U-turn if its moving
direction remains unchanged for 20 s except random varia-
tions. The moving direction of each ground mobile robot could
alter within a small range due to manufacturing precision,
which can be modeled as random error mathematically in
the computer simulation. The final target of winning the
competition is to drive at least 4 out of the 10 ground mobile
robots across the green edge (or sheepfold) of the square arena
(as shown in Fig. 1) within 10 min (i.e., the total time duration
of a trial is Ttotal = 10 min). During the mission, if any ground
mobile robot moves out the (cliff) edges rather than the green
one, it will be removed from the arena immediately by the
working staff. If more than six ground mobile robots escaped
from the edges rather the green one, this trial fails.

This game requires high-level autonomy without any human
intervention of drones from all the participants, including flight
control, localization, path planning, collision avoidance, target
detection, target tacking, driving, and so on. In addition, during
the whole mission, drones are not allowed to fly higher than
3 m in order to disable a global view in the air of the arena.
This makes the mission even more challenging in terms of
self-localization and distribution awareness of all the ground
mobile robots.

The challenge of this game is to investigate the high-level
decision of the drone over the total duration of each trial

(i.e., ∀t ∈ [0, 10 min]), including the target sequence to drive,
action sequence to deliver (i.e., either top touch or front col-
lision). We propose a simulation-based data-driven approach
to solve the decision problem. First, we build a simulator
which can simulate the behaviors of ground mobile robots
(both the 10 sheep robots and the four wolf robots) according
to the competition rules, where the model of Dubin’s car with
random perturbations is used. For the drone, a fully nonlinear
dynamic model of a quadrator in 3-D space is used, which is
derived based on standard techniques in classical rigid-body
dynamics, such as Euler–Lagrange mechanics. Within the
simulator, a path planning problem is solved to generate a
reasonably well trajectory for a drone from a given position
in the air to the predesignated mobile robot on the ground with
obstacle avoidance considered. Many available techniques to
provide the solution for the path planning problem, such as
time optimal control, artificial potential field [19], path integral
control [20], minimum snap [21], and so on.

III. NUMERICAL DESCRIPTION OF MISSION

Hereafter, we briefly represent the three agents in this game
as: shepherd, sheep, and wolf. To describe the shepherd game
numerically, we denote the shepherd as agent to make decision
and applying action, sheep as an action target i (action target
set T = {i |i = 1, 2, . . . , 10}). The shepherd can apply two
kinds of action type j (action type set O = { j | j = 0, 1, 2},
in which j = 0 means NONE operation).

For simplicity in the high-level decision-making, we drop
the third dimension of the shepherd (i.e., the height of a
shepherd), then we use (xg, yg) to represent the coordinate of
the shepherd. Similarly, we use (xi , yi ) to denote the position
of the sheep i .

A. Trigger Signals

Trigger signals are impulses applied on a sheep. A sheep
has a U-turn trigger signal by every � = 20 s. As a global
timer t , runs on all sheep on court, we do not denote timer
on each sheep. The trigger signal from global timer can be
stated as

δtimer,i (t) =
{

0, (t mod � �= 0)

1, (t mod � = 0).
(1)

There are two options for the actions, i.e., top touch or head
touch, which makes the sheep rotate π/4 or π , respectively.
The action can be taken either at the straight line status or the
rotation status. We define the actions can be effective as the
following events in terms of distance

dg,i (t) = ‖(xg(t), yg(t)) − (xi (t), yi (t))‖2, i ∈ T (2)

and

θg,i(t) = arctan
(yg − yi)

(xg − xi)
, i ∈ T (3)

�θg,i(t) = |θg,i(t) − θi (t)|. (4)

Define R1 as the radius of a sheep and R2 as the radius
of top touchpad. For head touch, the shepherd needs to touch
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the sheep on its head. Therefore, we denote the trigger signal
of head touch as

δhead,i (t) =
{

0, (else)

1, (dg,i(t) = R1,�θg,i (t) < π/4).
(5)

The trigger signal of top touch is denoted as

δtop,i (t) =
{

0, (else)

1, (dg,i(t) < R2).
(6)

Please note that δhead,i and δtop,i are triggered only once
for each attempting touch, i.e., there is only one trigger
signal before the shepherd leaves and reenters the effective
area R1/R2.

B. Modeling

Each sheep has two seperate status: straight line motion and
rotation. We reorganize the Dubins car model into two separate
models which can switch to each other due to trigger signals.
Denoting si = (xi , yi , θi )

top ∈ [0, 20]2 × [0, 2π] for sheep i ,
the straight line motion and rotation can be modeled as

⎛
⎜⎝

dsi

dt
dtturn,i

dt

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dxi

dt
dyi

dt
dθi

dt
dtturn,i

dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

v0 cos θi

v0 sin θi

ν
0

⎞
⎟⎟⎠

if tturn,i =0

or

⎛
⎜⎜⎝

0
0
ω0
−1

⎞
⎟⎟⎠

if tturn,i >0

(7)

where the linear motion velocity and angular velocity are
denoted as v0 (when there is no rotation command) and ω0
(when there is unfinished rotation command). The random
direction noise is denoted as ν, which is a zero-mean uniform
distribution noise.

The value of countdown timer tturn,i refers to the time
for unfinished rotation. For the countdown timer tturn,i , it is
defined as an internal state of sheep i . The sheep moves
straight when tturn,i = 0, and rotates when tturn,i > 0. The
trigger signal δi adds tturn,i by a corresponding rotation time,
as follows:

tturn,i (t) =
⎛
⎜⎝ tturn,i (t) + π

ω0
if δhead,i (t) = 1

tturn,i (t) + π

4ω0
if δtop,i (t) = 1

⎞
⎟⎠

or tturn,i (t) =
(

tturn,i (t) + π

ω0
if δtimer,i (t) = 1

)
. (8)

The tturn,i can be considered as a stack of rotation command,
as in Fig. 2. When the stack is empty, sheep moves straight.
The trigger signals push rotation command to this stack as (8).
When the stack is not empty, it pops rotation command to the
sheep [i.e., dtturn,i/dt = −1 in (7)].

Fig. 2. Flowchart of rotation countdown timer tturn for a single sheep.

IV. PROBLEM FORMULATION

In this section, we introduce an important notion in this
paper: periodic mean state. Then, we formulate the shepherd
mission as a Markov decision process (MDP).

We denote tk as the moment to make the kth decision, which
can be accomplished after a duration tk

a flying to the target
sheep. We denote tk

a as an action delay, for it is the delay
from making decision to accomplishing action. At the moment,
one action ak is accomplished, the shepherd makes the next
decision ak+1 at tk+1. Therefore, tk+1 = tk + tk

a .

A. Periodic Mean State

With the step and time definition mentioned earlier, we can
define the stepwise state for a sheep i as: sk

i = si (tk),
sk+1

i = si (tk+1) = si (tk + tk
a )

si (t
k+1) =

∫ t k+t k
a

t k
ṡi (τ )dτ. (9)

We plot the trajectories of a single sheep with the rules
of [(7)–(9)]. Fig. 3(a) shows a periodic trajectory when no
action is applied. When an action is applied, it jumps to a new
cycle trajectory immediately, due to the change of countdown
timer tturn caused by trigger signal δ.

Therefore, we define the periodic mean state s̄i as the mean
value of the state of a sheep within two periods 2 T

s̄i (t) = (x̄i , ȳi , θ̄i ) = 1

2T

∫ t+2T

t
si (τ )dτ. (10)

Since the sheep does U-turn with a period of T with
zero-mean direction noise and constant linear velocity, it is
intuitive to say that its period mean state remains unchanged if
there is no action applied on sheep i during this time duration

s̄i (t) = s̄i (t + �t) if ai, j (t) = (i, 0), t ∈ (t, t + �t). (11)

However, if there is an action a j �= 0 applied on the sheep i
at time ta , the period mean state s̄i (t) changes immediately
at the time ta : limδt→0 s̄i (ta − δt) �= limδt→0 s̄i (ta + δt),
though the instant state remains the same limδt→0 si (ta −δt) =
limδt→0 si (ta + δt). It is because as in (8), the shepherd action
only changes the tturn,i instantly.
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Fig. 3. Trajectory of sheep under different action a j . Green and red boxes: initial and ending position, respectively. Red circle: position where the action a j
is applied on the sheep. (a) a j = 0: none action. (b) a j = 1: head touch. (c) a j = 2: top touch.

The periodic mean state s̄i of step k + 1 is a function of
state s and action a of step k

s̄k+1
i = s̄i (t

k+1) = s̄i (t
k +tk

a ) = 1

2T

∫ t k+t k
a +2T

tk+t k
a

si (τ )dτ. (12)

Note that there is no transition between s̄k+1
i and s̄k

i , because
time t is not an factor of s̄i . From (12), we use sk

i rather than
s̄k

i to solve the s̄k+1
i . Therefore, to solve the next periodic

mean state s̄k+1
i , we need to know the current state si (tk),

the action ak , the motion rule of the sheep ṡ(t), and the action
delay tk

a . This is the reason using sk
i rather than s̄k

i as the state
in the following MDP formulation.

B. MDP Formulation

The shepherd game is formulated as an MDP [22], which is
widely applied in DP [23] and RL. MDP includes the factors:
state space s, action space a, policy π , and instant reward r .
The transition dynamics of MDP is random and defined by
the probability density function p(sk+1|sk, ak).

In this paper, action space is denoted as a 2-D integer space.
The first dimension is the target value from {1, . . . , 10}, and
the second dimension is the operation value from {1, 2}. The
action set A as the Cartesian product of T and O

A = T × O = {ai, j = (i, j)
∣∣i ∈ T , j ∈ O}. (13)

Let sg = (xg, yg) ∈ R
2 and si = (xi , yi , θi ) ∈ R

2 × [0, 2π]
be, respectively, the state vector of the shepherd and the
sheep i . Let t be the global time in continuous timeline:
t ∈ (0, Ttotal). The overall state s of MDP is defined as

s = {s1, s2, . . . , s10, sg, t}
= {(x1, y1, θ1), . . . , (x10, y10, θ10), (xg, yg), t}. (14)

The decision-making problem in the RL is formulated as
solving the optimal policy for a cumulated reward: Rk =∑F

p=k γ (p−k)r(s p, a p). Policy refers to the mapping of states
into actions: π : s → a. Following the Q-learning framework,
we implement ε-greedy policy in training and the greedy
policy in inference

Qπ (sk, ak) = Eπ [Rk |sk, ak]
a = arg max

a∈A
Qπ (s, a). (15)

As the steps k in this MDP is not evenly distributed in time,
we need to define an instant reward r which is step dependent
rather than time dependent. The first option is the number of
sheep into the sheepfold, i.e., if one sheep moves into the
sheepfold, there is a r = +1 reward, otherwise r = 0. But
this reward is too sparse in the training, which leads to a bad
convergence result. The second option is to define the forward
translation distance �ȳk based on the periodic mean state.

From (10), the si remains unchanged at tk + tk
a , while

the periodic mean state s̄i changes immediately due to the
immediate change of tturn,i . Therefore, the forward translation
distance �ȳk has an instant change at tk+1 as well.

As the target is placed in a {(x, y)} coordinate, without
losing the generality, we define that the sheepfold locates at
the area {0 < x < 20, y ≤ 0}. An action driven the sheep
toward the y = 0 direction has positive reward

rk = r(sk, ak) = −
∑
i∈I

�ȳk+1
i (16)

from which

�si = (�x̄i ,�ȳi ,�θ̄i ) = s̄k+1
i − s̄k

i . (17)

V. ALGORITHMS

Based on the MDP for the shepherd game, its state space is a
multidimensional continuous space, and the action space is an
integer space. Q-learning with value function [24] is suitable
for this kind of problem.

We test two approaches to solve this problem. The first
is to use a deep neural network to fit the Q function. The
advantage of this method is that the original 33-dimensional
state as (14) can be used by the neural network without manual
feature extraction. The disadvantage is that due to the use
of deep neural networks, convergence is not guaranteed and
explainability is weak.

In the second approach, we analyze this game to make some
simplification. Based on the periodic moving properties of the
sheep, we build an LUT for state-space discretization. The
advantage of this method is that the results are interpretable
and controllable. The disadvantage is that this approach is not
general for other problems.
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A. Deep Q-Learning

We first introduce deep Q-learning, also called
DQN [6], [7]. In these studies, the notion “deep” can
be divided in two aspects. One is to use a deep visual
network such as a convolutional neural network to extract
information from the raw image. The other is to fit the
Q-function through a multilayer full connected (FC) network.
We focus on the latter one, i.e., training a deep FC network
to approximate the Q-function (namely, value network).

Our DQN approach is slightly different from the classic
one on the point that, one action needs to run for a duration
of time: ta , rather than a single timestep. The simulation and
the way to calculate r is slightly different. The algorithm is
summarized as Algorithm 1.

Algorithm 1 Training of DQNs
Input: Neural network Q(s, a) initialized by random

weights
Output: Trained value netwoks Q(s, a)

1 for step = 1 : N do
2 while t < t f do
3 Choose action akk by ε-greedy policy
4 Predict the running time of this action tk

a
5 Run the system for ta,k with action ak

6 Calculate rk as the cumulated instant reward during
tk
a

7 Store the transition (sk, ak, sk+1, rk) to the replay
buffer

8 Sample training batch from replay buffer
9 Update the value network

10 end
11 end

B. Greedy Policy and Lookup Table

According to our reward based on the definition of periodic
mean state, a head touch (a j = 1) does not have future reward.
This is because the sheep only jumps from one moving cycle
to another moving cycle, with the cycle center changed. After
this change finishes, there is no further effect from this action.

For top touch (a j = 2), it has future effect since it changes
the direction, then changes the instant reward of future head
touch action. But from the experiment results, the top touch is
often (not always) the first action applied on a sheep, followed
by a sequence of head touch. Therefore, we can assume the
greedy policy will be good enough (not global optimal) for
this specific problem

a = π(s) = arg max
a∈A

r(s, a). (18)

We divide the reward vector r(s, a) into independent
reward referring to each target and action: r(s, a) =
{r(si , sg, t, ai, j )|i = 1, . . . 10}. The most important term in
effect, the reward is the distance between the shepherd and
the target sheep: dg,i = ‖(xg, yg) − (xi , yi )‖2. Exploiting the
reduction from position to distance, we can reduce the R

22

state space to R
10: r(s, a) = {r(dg,i , θi , t, ai, j )|i = 1, . . . , 10}.

TABLE I

LUT DESCRIPTION

Algorithm 2 Training of LUT
Input: Blank LUT, sample number M
Output: Reward LUT r̂(d, θ, t, a j )

1 for Each discrete table element do
2 for samplenumber = 1 : M do
3 Initialize a state tuple (d0, θ0, t0) in this element

range by uniform distribution
4 Load this initialization tuple into training environ-

ment
5 Run for one period with operation a j and observe

the result
6 Update the policy evaluation by MC sampling
7 end
8 Store the mean value in the LUT;
9 end

Furthermore, for each target i , the distance, heading, and time
are equivalent

r(di1 , θi1 , t, ai1, j ) = r(di2 , θi2 , t, ai2, j )

if di1 = di2 , θi1 = θi2 . (19)

Therefore, our LUT can reduce to the reward on target
independent distance and heading angle: r̂(d, θ, t, a j ).

To store the training result from MC sampling, we build
an LUT which discretizes the continuous state space, similar
to [25]. Given a state s, we calculate the reward as (16).
Since the existence of random events, the reward of each
action r(d, θ, t, a j ) is measured by the sampling through the
simulator, defined by (20). The reward value corresponding to
pair (d, θ, t, a j ) is stored in a four-dimension LUT as given
in Table I.

We initialize the state by sampling under a joint uniform
distribution and discretize the initial state (d, θ, t, j) to index
in the LUT. A simulation based on the behavior of the
target (7) runs to generate the reward. The total sampling
number is defined as M

r̂M (d, θ, t, a j ) = 1

M

M∑
m=1

rm(d, θ, t, a j ). (20)

C. Analysis

For LUT approach, denote the optimal action of greedy
policy is a∗. The reward of a∗ refers to the maximum value
of the LUT r(dg,i , θi , t, a∗

i, j )

a∗ = arg max
a

r(dg,i , θi , t, ai, j ) (21)
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Fig. 4. Three phases of interactive process. (a) Cruise phase. (b) Track phase. (c) Approach phase.

TABLE II

COMPARISON ON TRAJECTORY PHASES

while the action is chosen by

a = arg max
a

r̂(dg,i , θi , t, ai, j ). (22)

For sample number M1 > M2, the estimation r̂ is closer to
the real value r due to law of large numbers [26]

lim
M→+∞ r̂M (d, θ, t, a j ) = r(dg,i , θi , t, ai, j ). (23)

Therefore, πM1(s, a∗) > πM2(s, a∗), i.e., the probability
of choosing optimal action a∗ will increase with the sample
number M .

For the DQN approach, though the action delay exists, it can
be drop into a Q-learning framework. The convergence of
Q-learning is proven by [27]. For the value network, tricks
such as replay buffer and target network [7] are applied to
improve the convergence.

VI. INSTANT REWARD SIMULATOR

In both the DQN approach in Section V-A and LUT
approach in Section V-B, the instant reward r cannot be
directly observed from environment. In order to obtain the
instant reward r regarding to the state and action, we run a
simulator based on the model (7) for t ∈ [tk, tk + tk

a + 2T ],
then calculate the reward as (10) and (16).

The factor that cannot be directly obtained is the action
delay tk

a . In this shepherd game, as the action delay is from
the flight to the target sheep, it should be a function of
state, or briefly speaking, distance

ta(s, ai, j ) = ta(sg, si , a j ) ≈ ta(dg,i). (24)

To verify our hypothesis that action delay is a function
of distance, we analyze the flight to the sheep. We imple-
ment a three-phase trajectory generation algorithm [28] in our
real-world flight test. The whole flight is divided into three
phases: cruising, tracking, and approaching, as shown in Fig. 4
and Table II.

From our experiment results in [28], the time of the tracking
phase and approaching phase is almost constant. The predic-
tion t̂a should be larger than the real action delay ta . Because

Fig. 5. Simulation results of path integral controller and time prediction of
cruising phase. (a) Path integral controller trajectory with avoidance of two
moving obstacles. (b) Time comparison of cruising phase.

the shepherd can reach and wait to meet the predicted time,
but not vice versa

t̂a ≥ tcr(di ) + ttr + tap. (25)

By using the path integral controller [29], [30], we
implement an approximate constant-velocity cruising flight.
We run a number of simulations in the Robot Operating
System–Gazebo system with a quadcopter unmanned aerial
vehicle and several ground vehicles. Fig. 5(a) is a sample
of the horizontal trajectories of the sheep, shepherd, and two
wolves. We setup the simulations with two cases and record
the time tcr: one target and one obstacle (red solid line),
one target without obstacle (green dashed line) as shown
in Fig. 5(b). There is a redundancy between the blue
dashed line and red/green lines in (25). This verifies our
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Fig. 6. Simulation results of DQN approach. (a) Trajectories of the targets. (b) Trajectory of the targets. (c) Performance on training steps. The ideal values
of target out number and driving distance are 10 and 100 m, respectively.

hypothesis that the action delay can be a linear function of
distance.

VII. SIMULATION RESULTS

We test our LUT and DQN approaches by simulations. The
LUT is implemented on MATLAB 2011b on a computer with
Intel i7-4770 and 16-GB ROM. The DQN is implemented on
Python 3, Tensorflow 1.4 on a computer with Intel i7-6700,
NVidia GTX 960 M, and 16-GB ROM.

At the beginning of this simulation, all sheep poses at a
circle centering at (x = 10, y = 10) with a radius of 2 m.
When one sheep touches the boundary of the 20-m square
court, it stops moving. We run the simulation with an episode
of 600 s (t ∈ [0, Ttotal])

To compare the results, we introduce two metrics: episode
driven distance d� and episode driven number n� . Episode
driven distance is defined as d� = ∑

i∈T (yi (Ttotal) − yi(0)),
whose optimal result is 100 m (all sheep starts from a circle
centering at y = 10, and terminates at sheepfold y = 0).

Episode driven number is the number of sheep into the
sheepfold at the end: n� = ∑

i∈T 1(yi(Ttotal) = 0) (1 is the
indicator function). The optimal result of n� is 10 (all sheep
reach sheepfold).

A. DQN Approach

In our DQN approach, the value network is setup as a
five-layer fully connected network. The number of neurons
in each layer is [4096, 2048, 1024, 512, 256]. In one episode,
after the state sk is observed, the action ak is generated by
the ε-greedy policy in training and greedy policy in inference.
Action delay tk

a is calculated the timer prediction in Section VI
by the distance of shepherd and target sheep in ak

i . After that,
we run the simulation as in Section VI to obtain the instant
reward rk . Then, the pair (sk, ak, rk, sk+1) is stored into a
replay buffer.

Fig. 6(a) and (b) are the two typical episodes of simu-
lation results, driving out five and six sheep to sheepfold,
respectively. Fig. 6(c) is the performance on training steps.
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Fig. 7. Simulation results of LUT approach. (a) Trajectories of the targets. (b) Trajectory of the agent. (c) Performance on sample number. The ideal values
of target out number and driving distance are 10 and 100 m, respectively.

It shows an increasing performance in the whole training
process. However, the final result is not as good as the LUT.
The episode driven distance is around d� = 70 m (compared
to d� = 90 m in LUT). The best number of driven out is
n� = 5 (compared to n� = 9 in LUT).

From Fig. 6(a) and (b), we can see the DQN policy prefers
to apply a sequence of top touch (a j = 2). Though DQN also
learns to apply sequential head touch as the green and brown
trajectories, it is not efficient in other sheep. The policy of
DQN shows a preference in conducting a sequence of same
action type on a certain target sheep.

B. LUT Approach

Fig. 7(a) is a typical example of LUT simulation results,
the shepherd drives 10 sheep into sheepfold within 600 s.
Fig. 7(b) is the agent trajectory of this process.

In this simulation, when the sheep is not heading to the
sheepfold, top touch [green dots in Fig. 7(a)] to change its
direction. When a sheep is heading toward to or opposite to
the sheepfold, the shepherd implements head touch (a j = 1)
at the right time to drive it to the sheepfold.

The performances d� and n� regard to sample number M
is as shown in Fig. 7(c). In the test, the sample number M
starts at 60 with an increasing step of 60. We run five episodes
and use the mean value of d� and n� regarding to each M .
This test shows a rapid growing performance from M = 60
to M = 1200. In this segment, the episode driven number n�

increase from 0 to around 9.
We can compare this performance with human perfor-

mance in the manual compeittion IARC2015. Comparing to
the human behavior, this shepherd implements a nonintu-
itive policy: head touching a sheep at the end of a period
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(15 < t mod T < 20), driving the sheep to the sheepfold by
a double U-turn (one is from δhead and another is from δtimer).
While human operators tend to head touch the target at the
beginning of a period (0 < t mod T < 5). Our shepherd
policy is verified to be the most efficient one, since it saves
the time of one approaching phase for straight line motion,
which is about 1 m more in each operation, comparing to the
human policy.

VIII. CONCLUSION

This paper contributes toward the decision and control
scheme of the shepherd game of IARC. The effectiveness and
efficiency of our proposed method are verified by simulations
of the shepherd problem. In the IARC2017, a timer-based
policy, derived from this paper, supports our team winning
the first prize of Asia-Pacific Venue and keeping the world
best record of this mission. 1 The complete version of this
method is not implemented due to the limitation of the sensory
subsystem. The sensors cannot provide all the information
required by this method.

The future work should be an approach from raw sensor
rather than solved states input to continuous action output.
An end-to-end approach without hand-crafted features would
be updated. The reward would be “in sheepfold or not” rather
than a defined function. We will also investigate the use
of more sophisticated deep neural networks in the learning
structure.
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