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Abstract— Collision evaluation is of vital importance in
various applications. However, existing methods are either
cumbersome to calculate or have a gap with the actual value.
In this paper, we propose a zero-gap whole-body collision
evaluation which can be formulated as a low dimensional linear
program. This evaluation can be solved analytically in O(m)
computational time, where m is the total number of the linear
inequalities in this linear program. Moreover, the proposed
method is efficient in obtaining its gradient, making it easy
to apply to optimization-based applications.

I. INTRODUCTION

Evaluation of collisions is critical in a variety of fields,
such as obstacle avoidance in motion planning. In this paper,
we propose a novel exact method that evaluates the collisions
of two convex objects.

Simplex-based iterative approaches Gilbert-Johnson-
Keerthi [1] (GJK) and enhancing GJK [2] have been
widely used to calculate the distance between two convex
objects. However, these algorithms require pre-processing to
compute support functions. When two objects intersect, the
computational cost of the GJK has to take the expanding
polytope [3] algorithm (EPA) into account. Gilbert et al. [4]
propose a growth distance to measure the separation and
penetration of two objects. Similar to Gilbert’s work [4],
Tracy et al. [5] calculate the minimum scale that both objects
have to be enlarged or reduced simultaneously to achieve
that there is only one intersection of them. They formulate
the minimum scale computation as a conic problem solved
by primal-dual interior-point methods, which is complex
to solve and get gradient. However, these two methods do
not support locality, which means that when we demand
to evaluate the collision of a robot with many obstacles,
these methods require the robot to perform calculation one
by one with all the obstacles, not just with the obstacles
within a certain range around it. Furthermore, the methods
encounter problems with unstable values when one of the
objects is much larger than the other one. Recently, Lutz et
al. [6] propose a constructive solid geometry method based
on two-layer LogSumExp functions. Although this method
is easy to get the distance and distance gradient, it has a
gap with the true value.

In this paper, we propose to evaluate collision by calcu-
lating the minimum scale at which one of the objects can be
scaled to allow it to collide with another object. The proposed
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Fig. 1. This figure illustrates the application to a whole-body multicopter
trajectory optimization problem which requires the multicopter to fly from
the start to the end. (a): The red curve is the trajectory of the multicopter.
(b): The write polyhedrons are the obstacles; the green rectangles are the
snapshots of the multicopter which flies along the red trajectory in (a) to
cross the narrow gap built by the two obstacles.

method has several strengths: 1) This method is exact, do
not have gap with the true value. 2) In contrast to the above
mentioned methods [4], [5] of zooming in or out of the two
objects simultaneously, this method support locality. It means
that even if there are many obstacles in the environment, this
method only needs to focus on a small number of obstacles
around the robot body, which can be achieved simply by
filtering the obstacles with a bounding-box or ball. 3) We
will formulate the evaluation method into a low dimensional
linear program whose computational time is O(m) [7], where
m is the total number of the linear inequalities in the linear
program. With the active constraints of the linear program,
we can calculate the gradient of the scale with respect to the
ego motion of the scaled object analytically. 4) Additionally,
it offers support conveniently for both objects represented by
points and objects represented by surfaces, which then we
will abbreviate with V-representation and H-representation.
It is worth emphasising that our method can be applied
directly, without pre-processing, even for objects represented
by redundant points or surfaces.

II. PROBLEM DEFINITION

We will present the problem definition of calculating the
minimum scale with V-representation and H-representation
respectively. For ease of presentation, we will refer to the
scaled object as the body and to the other object as the
obstacle below.
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Fig. 2. This figure illustrates the problem definition in V-representation.
(a): The body and the obstacle are defined by the yellow and blue convex
hull respectively. We use the yellow and blue redundant points to represent
the body and the obstacle respectively. (b): To prevent confusion in the
visualisation, the redundant points are not illustrated. The light blue points
represent the scaled body and the red line denotes the half space containing
the scaled body but not the obstacle.

A. V-representation

In V-representation, as shown in Fig. 2(a), both the yellow
and blue objects are defined by a convex hull that can contain
the redundant points. However, instead of processing points
into convex hull, the proposed method is capable of working
directly on the redundant points. It is essential to highlight
that for clarity of display, we do not visualise points that are
redundant for representing object in Fig. 2(b).

As illustrated in Fig 2(a), we use point sets P bbody =

{(pbb)i|i = 1, 2, ..., nb} and P bobs = {(pbo)j |j = 1, 2, ..., no}
to represent body and obstacle in the body frame. We define
a point ps in the body frame as scale seed point, which the
body point sets scale about. Then we get obstacle and scaled
body point sets in a coordinate system with the scale seed
point ps as the origin as

P sbody(β) = {(psbs)i = β
(
(pbb)i − pbs

)
|i = 1, 2, ..., nb},

P sobs = {(pso)j = (pbo)j − pbs|j = 1, 2, ..., no},
(1)

where β ∈ R+ is the scale.
Then we define the problem of calculating the minimum

scale in V-representation as to maximize the scale β with the
constraints of{

αT
o β
(
(pbb)i − pbs

)
≤ 1, i = 1, 2, ..., nb

αT
o

(
(pbo)j − pbs

)
≥ 1, j = 1, 2, ..., no

, (2)

which means a half space H = {x|αT
o x ≤ 1} is required so
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Fig. 3. This figure illustrates the problem definition in H-representation.
(a): The body and the obstacle are represented by intersections of sev-
eral redundant yellow and blue half spaces respectively. (b): For better
visualisation, we do not show the half spaces that are redundant for the
representation. The dark blue points represent the scaled body and the red
point denotes the point that belongs to both the scaled body and the obstacle.

that the scaled body P sbody(β) is inside the half space and
the obstacle P sobs is outside it, as shown in Fig. 2(b).

We define αT = βαT
o . Since β ∈ R+, finally, we can

formulate the scale calcluation problem as a low dimension
LP problem:

maxβ

s.t.

{
αT
(
(pbb)i − pbs

)
≤ 1, i = 1, 2, ..., nb

αT
(
(pbo)j − pbs

)
≥ β, j = 1, 2, ..., no

.
(3)

B. H-representation

In H-representation, as illustrated in Fig. 3(a), we use the
intersection of several redundant half spaces to represent a
convex polyhedron. It needs to be stressed that for clear
display, the redundant half spaces are not shown in Fig. 3(b).

As indicated in Fig. 3(a), we use Cbody = {x|(αb)Ti (x−
pb) ≤ 1, i = 1, 2, ..., nb} and Cobs = {x|(αo)Tj (x − po) ≤
1, j = 1, 2, ..., no} to represent body and obstacle in the
world frame. pb and po are points inside body and obstacle
respectively. nb and no are the number of half spaces whose
intersection define body and obstacle. We make the body
scale about pb, then the scaled body can be written as

Cbody(β) = {x|(αb)Ti (x− pb) ≤ β, i = 1, 2, ..., nb}, (4)

where β ∈ R+ is the scale.



Referring to Eq.2 and Eq.3, we define the problem in H-
representation as

maxβ

s.t.

{
(αb)

T
i (x− pb) ≤ β, i = 1, 2, ..., nb

(αo)
T
j (x− po) ≤ 1, j = 1, 2, ..., no

,
(5)

which is obviously a low dimension LP problem. And the
constraints of Eq.5 means that a point x which satisfies x ∈
Cbody(β) ∩ Cosb is required as illustrated in Fig. 3(b).

III. GRADIENT COMPUTATION

Since both problems we defined with V-representation and
H-representation are in the form of LP, we only derive the
sub-gradient in V-representation in this paper and the idea
of gradient computation in H-representation is similar.

We use the active constraints of the low dimension LP
problem to get the gradient of the scale β. In n-dimensional
environment, based on the LP problem definition in Eq.3,
there are two different kinds of active constraints which can
be written in the form of linear equations:[(

(pbb ac)i − pbs
)T

0
] [αn×1

β

]
= 1, i = 1, 2, ..., nb ac[(

(pbo ac)j − pbs
)T − 1

] [αn×1

β

]
= 0, j = 1, 2, ..., no ac

(6)
where (pbb ac)i ∈ P bbody , (pbo ac)j ∈ P bobs and nb ac+no ac =
n+ 1, which means we should have n+ 1 active constraints
to solve the LP problem.

We refer to (pbb ac)i and (pbo ac)j as the active constraint
point on the body and the obstacle respectively. In Fig. 4, We
show the result of the minimum scale calculation defined in
V-representation. As indicated in Fig. 4(b), the red points
in the green and white convex hull are the (pbb ac)i and
(pbo ac)j separately. Additionally, the points in the scaled
body obtained from the (pbb ac)i according to Eq. 1 and
(pbo ac)j are on the hyperplane P = {x|αTx ≤ β} which
is represented in Fig. 4(b) by the blue plane.

We combine all the linear equations in Eq. 6 and write
them in matrix form as

(
(pbb ac)1 − pbs

)T
...(

(pbb ac)nb ac
− pbs

)T(
(pbo ac)1 − pbs

)T
...(

(pbo ac)no ac
− pbs

)T

0
...
0
1
...
1


[
αn×1

β

]
=



1
...
1
0
...
0


. (7)

Then we block this matrix equation in Eq. 7 in into[
An×n Bn×1

C1×n D1×1

] [
αn×1

β

]
=

[
En×1

F1×1

]
, (8)

which can be written into equation group form:{
An×nαn×1 + Bn×1β = En×1

C1×nαn×1 + D1×1β = F1×1
, (9)

(a)

(b)

Fig. 4. This figure illustrates the result of calculating the minimum scale
defined in V-representation. (a): The white and the green convex hull denote
the obstacle and the body respectively. (b): The yellow convex hull is the
scaled body obtained by enlarging the body to the minimum scale. The blue
plane is the hyperplane splitting the scaled body and the obstacle, and the
red points represent the active constraint points which satisfy one of the
linear equations in Eq. 6. Although the objects are visualized using convex
hull in this figure, the problem defined in V-representation is applied directly
to the redundant point sets during the calculation.

where the variable αn×1 can be eliminated and get equation
which only have one variable β:

C1×nA
−1
n×n(En×1 −Bn×1β) + D1×1β = F1×1. (10)

For a rigid body, the point set P bbody in body frame is not
related to the motion of the body. As for P bobs, in practice
we can only directly obtain the obstacle’s point set Pwobs in
world frame. In order not to lose generality, we define the
centre of rotation of the rigid body in the body frame as
pbcen, and define R and t for the rotation and translation of
the bdoy in the world frame. Based on the body’s motion
and Pwobs, we can get the point in P bobs as

(pbo)j = R−1
(
(pwo )j − t− pbcen

)
, (11)

Then we can conveniently use the implicit function in Eq.
10, which contains the relationship between the scale and
the motion of the rigid body, to obtain the partial derivatives
of β with respect to R and t.

IV. APPLICATION

To demonstrate the usability of the method proposed in
this paper, we apply the method to a whole-body multicopter
trajectory optimization problem, based on the differential
flatness of multicopter in Wang’s work [8]. As shown in
Fig. 1, we model the multicopter with a green rectangle and
require it to fly through a narrow slit consisting of two white
obstacles. We adopt segmented polynomial to represent the
flat-output trajectory, of which we use the MINCO [8] to



conduct spatialtemporal deformation. In this SE(3) trajectory
optimization, we achieve multicopter whole-body obstacle
avoidance by requiring the minimum scale defined in Sec.
II greater than 1, which needs the gradient of the scale with
respect to the motion of the multicopter.

A. Gradient Computation for SE(3) Motion

We derive the calculation of the gradient in detail. As
defined in Sec. III, we use R and t to represent the rotation
matrix and translation of the body. For convenience, in op-
timization we use a normalized quaternion q = [w, x, y, z]T

to represent rotation. Referring to [9], the rotation matrix R
can be expressed by the quaternion q as

R =

1− 2(y2 + z2) 2(xy − wz) 2(xz + wy)
2(xy + wz) 1− 2(x2 + z2) 2(yz − wx)
2(xz − wy) 2(yz + wx) 1− 2(x2 + y2)

 ,
(12)

based on which, the partial derivatives ∂R
∂q.∗ , ∗ = {w, x, y, z}

can easily obtained.
In this case where n = 3, as mentioned in Sec. III, the

LP problem which defined in Sec. II-A should have 4 active
constraints. The specific situations of ac (active constraints)
can be divided into three types:

• 3 ac ∈ P bbody , 1 ac ∈ P bobs;
• 2 ac ∈ P bbody , 2 ac ∈ P bobs;
• 1 ac ∈ P bbody , 3 ac ∈ P bobs.
We then analyse each type in turn:
1) 3 ac ∈ P bbody , 1 ac ∈ P bobs: In this case, the block

matrix equation in Eq.8 can be written as

(
(pbb ac)1 − pbs

)T(
(pbb ac)2 − pbs

)T(
(pbb ac)3 − pbs

)T
 0

0
0(

(pbo ac)1 − pbs
)T −1


[
α3×1

β

]
=


1
1
1
0

 . (13)

Then based on Eq.10, we can get

β =
(
(pbo ac)1 − pbs

)T 
(
(pbb ac)1 − pbs

)T(
(pbb ac)2 − pbs

)T(
(pbb ac)3 − pbs

)T

−1 1

1
1

 , (14)

where only (pbo ac)1 is related to R and t. Based on Eq.11,
for brevity, we write this equation in Eq. 14 as

β =
(
(pbo ac)1 − pbs

)T
A−1E,

=
(
R−1

(
(pwo ac)1 − t− pbcen

)
− pbs

)T
A−1E, ,

(15)

where A and E are defined in Eq. 8. In this case, A and E
are constant. Then we can get the gradient of β w.r.t. t as

∂β

∂t
= −RM. (16)

And we can get the gradient of β w.r.t. q as

∂β

∂q.∗
= −(pwo ac)

T
1

∂RT

∂q.∗
RM. (17)

2) 2 ac ∈ P bbody , 2 ac ∈ P bobs: In this case, the block
matrix equation in Eq.8 can be written as


(
(pbb ac)1 − pbs

)T(
(pbb ac)2 − pbs

)T
(∆pbo ac)

T

 0
0
0(

(pbo ac)1 − pbs
)T −1


[
α3×1

β

]
=


1
1
0
0

 , (18)

where the ac corresponding to ∆pbo ac is(
(pbo ac)1 − pbs

)T
α− β = 0,(

(pbo ac)2 − pbs
)T
α− β = 0,

(19)

which can be combined to obtain(
(pbo ac)

T
1 − (pbo ac)

T
2

)
α = (∆pbo ac)

Tα = 0. (20)

Based on Eq.11 ∆pbo ac can be written as

∆pbo ac = R−1 ((pwo )1 − pwo )2) . (21)

Then based on Eq.10, we can get

β =
(
(pbo ac)1 − pbs

)T 
(
(pbb ac)1 − pbs

)T(
(pbb ac)2 − pbs

)T
(∆pbo ac)

T


−1 1

1
0

 , (22)

which, for brevity, we write as

β = CA−1E, (23)

where C, A and E are defined in Eq. 8. In this case, C
is related to R and t, A is only related to R, and E is a
constant matrix.

Then we can get the gradient of β w.r.t. t as

∂β

∂t
= −RA−1E. (24)

And we can get the gradient of β w.r.t. q as

∂β

∂q.∗
=− (pbo ac)

T
1

∂RT

∂q.∗
RA−1E

+ CA−1

 01×3

01×3

(∆pbo ac)
T ∂RT

∂q.∗R

A−1E.

(25)

3) 1 ac ∈ P bbody , 3 ac ∈ P bobs: In this case, the block
matrix equation in Eq.8 can be written as


(
(pbo ac)1 − pbs

)T(
(pbo ac)2 − pbs

)T(
(pbo ac)3 − pbs

)T
 −1
−1
−1(

(pbb ac)1 − pbs
)T

0


[
α3×1

β

]
=


0
0
0
1

 . (26)

Then based on Eq.10, we can get

−
(
(pbb ac)1 − pbs

)T 
(
(pbo ac)1 − pbs

)T(
(pbo ac)2 − pbs

)T(
(pbo ac)3 − pbs

)T

−1 −1
−1
−1

β = 1,

(27)
which, for brevity, we write as

−CA−1Bβ = 1, (28)
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Fig. 5. Experimental validation of our method through a SE(3) whole-body multicopter trajectory optimization, where the multicopter is required to cross
a narrow gap made up of two white obstacles. Top: The visualization of the experiment. The red curve denotes the trajectory generated by the proposed
method. The white objects are the obstacle and the green rectangles in each small figure represent the multicopter which shows the process of the SE(3)
flight. Bottom: Visualisation of velocity and acceleration of the executed trajectory.

where C, A and B are defined in Eq. 8. C and B are
constant when ac is determined in this case. Only A is
related to R and t.

Then we can get the gradient of β w.r.t. t as

CA−1B
∂β

∂t.x
+ CA−1

1 0 0
1 0 0
1 0 0

RA−1Bβ = 0. (29)

Based Eq.28, the gradient can be written as

1

β

∂β

∂t.x
+
[ 1
β 0 0

]
RA−1Bβ = 0. (30)

Finally we obtain the gradient as

∂β

∂t
= −βRA−1B. (31)

And we can get the gradient of β w.r.t. q as

1

β

∂β

∂q.∗
−CA−1 ∂A

∂q.∗
A−1Bβ = 0, (32)

which can be written as
∂β

∂q.∗
= CA−1 ∂A

∂q.∗
A−1Bβ2, (33)

where ∂A
∂q.∗ can be get by

∂A

∂q.∗
= −

(pbo ac)
T
1

(pbo ac)
T
2

(pbo ac)
T
3

 ∂RT

∂q.∗
R, (34)

B. Experiment Result

L-BFGS1 [10] is adopted as an efficient quasi-Newton
method to solve the numerical optimization problem. We
use Lewis-Overton line search [11] that supports nonsmooth
functions to deal with the nonsmoothness of the scale, which
sometimes occurs during optimization. As the optimization
result shows in Fig. 5, the SE(3) whole-body trajectory
generated by our method is collision free and smooth.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a exact whole-body collision
formulation via linear scale, which can be solved efficiently.
Furthermore, we derive the calculation of its gradient and
applied it to a 3-D trajectory optimization problem.

In addition to the multicopters mentioned in Sec. IV, the
proposed method can be applied to other mobile robots, such
as vehicles and robotic arms. Benefiting from its scale-based
design, this method can be implemented for deformable
robots and swarm formations as well. The above applications
of this method will be released in the near future. It is also
worth mentioning that we will consider continuous collision
formulation in the trajectory optimization to improve the
completeness of planning.

1https://github.com/ZJU-FAST-Lab/LBFGS-Lite
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