
[Technical Report] FAST Lab, Zhejiang University

Decentralized Spatial-Temporal
Trajectory Planning for Multicopter Swarms

Xin Zhou, Zhepei Wang, Xiangyong Wen, Jiangchao Zhu, Chao Xu and Fei Gao∗

Abstract—Multicopter swarms with decentralized structure
possess the nature of flexibility and robustness, while efficient
spatial-temporal trajectory planning still remains a challenge.
This report introduces decentralized spatial-temporal trajectory
planning, which puts a well-formed trajectory representation
named MINCO into multi-agent scenarios. Our method ensures
high-quality local planning for each agent subject to any con-
straint from either the coordination of the swarm or safety
requirements in cluttered environments. Then, the local trajec-
tory generation is formulated as an unconstrained optimization
problem that is efficiently solved in milliseconds. Moreover, a
decentralized asynchronous mechanism is designed to trigger the
local planning for each agent. A systematic solution is presented
with detailed descriptions of careful engineering considerations.
Extensive benchmarks and indoor/outdoor experiments validate
its wide applicability and high quality. Our software will be
released for the reference of the community.

I. INTRODUCTION

Aerial swarm robotics capable of three-dimensional oper-
ations show superior flexibility (adaptability, scalability, and
maintainability) and robustness (reliability, survivability, and
fault-tolerance) compared to ground vehicles or single-agent
systems [4]. In recent years, great amount of attentions have
been paid to develop advanced architectures and algorithms
that push the boundary of fully autonomous aerial swarms.

The key module in the swarm is its planning algorithm,
which dominates the efficiency and feasibility of the formation
flight. Investigating the most underlying demand for swarm
planning, it is expected to not only deform the shape of
trajectories to avoid collisions, but also adjust the time profiles
to exploit the sequential solution space and squeeze the feasi-
bility of agents. Spatial-temporal joint trajectory optimization
is primary to achieve this, but is challenging even for a single
agent. If only spatial deformation is performed [26], as shown
in Fig. 3, agents tend to circumnavigate to wait for others
while passing through a narrow passage, which hinders latter
agents and results in inferior solutions. To this end, we adopt
a recently developed trajectory representation named MINCO
by Wang et al. [24], which is specially designed for spatial-
temporal trajectory optimization for integrator chain systems.
Moreover, since trajectory representations are critical but often
ambiguous, starting with MINCO, we present a discussion
(Sec. II-A) of several commonly used trajectory parameter-
ization methods to developers in robotics community.

*Corresponding author.
All authors are with the State Key Laboratory of Industrial Control Technology, Insti-

tute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China and
Huzhou Institute, Zhejiang University, Huzhou 313000, China. (email: {iszhouxin,
fgaoaa}@zju.edu.cn).

Fig. 1: Various outdoor experiments. Please watch the attached video
for more information.

1 2
3 4

Fig. 2: Large scale position exchange. Colored curves indicate the
positions agents have passed; gray curves are planned trajectories,
colored obstacles represent the maps agents build. All the agents
perform independent sensing, planning, and controlling. The program
of all agents runs on a desktop CPU in real-time.

Based on MINCO, we propose a decentralized planner
capable of spatial-temporal optimization for aerial swarms. To
utilize this novel trajectory representation, several functions
are designed to either penalize collision, restrict dynamical
infeasibility or regularize the trajectory duration. Using the
gradient propagation scheme of MINCO, the gradients of
penalty functions on typical polynomial trajectories are effi-
ciently propagated to those of MINCO. The planning problem
is then formulated as an unconstrained optimization, which is

[Technical Report] FAST Lab, Zhejiang University

Fig. 3: Trajectory comparison with/without temporal optimization.
Dotted curves: without temporal optimization, agents use detours to
delay time. Solid curves: with temporal optimization, shorter and
smoother trajectories are generated.

solved efficiently with a customized solver in milliseconds. We
further deploy our proposed algorithm into a hardware system
built with careful engineering considerations.

Besides algorithmic research, another fundamental require-
ment for the swarm is the architecture, which necessitates
moderate inter-dependency, robust communication mecha-
nism, and flexible system scale. This report presents a decen-
tralized and asynchronously triggered planning strategy, which
reduces the scale of the problem and distributes the computa-
tion burden to every single agent. Key components that bring
this system to real-world, such as reciprocal drone detection,
world frame alignments, networked trajectory broadcasting,
and on-demand time synchronization, are also presented. Fi-
nally, the proposed fully autonomous swarm system is verified
by extensive experiments in unknown, obstacle-rich, in/out-
door environments as Fig. 1 and 2.

The main points of this report are summarized as follows:
1) A decentralized and asynchronous planning framework,

which decouples the whole swarm planning problem and
makes the system robust to communication failure.

2) A spatial-temporal trajectory optimization method, ex-
tending MINCO representation to multi-agent scenarios.

3) Engineering practices that bring the fully autonomous
swarm to real-world. The software will be released after
the reception of our previous work [24] for the reference
of the community.

II. RELATED WORKS

A. Trajectory Parameterization for Aerial Robots

Pros and cons of typical trajectory parameterization for
aerial robots are summarized in Tab. I. Polynomial curves
are widely used by traditional works [12, 13, 17], who mostly
use polynomial coefficients as decision variables, along with
explicit continuity constraints. Many works [13, 17] deform
a piecewise polynomial trajectory by adding intermediate
waypoints. However, the distribution of waypoints requires
a careful configuration to balance feasibility satisfaction and
computational burden. For optimizing the time profile of a
polynomial, the representative method uses gradient descent
with numerical differences [17]. Nevertheless, this method
requires a dense matrix inversion to transform waypoints to

coefficients, making the optimization quickly intractable when
the problem scales-up. Bézier and B-Spline share the convex
hull nature, which indicates that the curve is entirely contained
in the convex hull of its control points [7, 20]. Therefore,
these curves are convenient to add constraints, which can be
done by merely restricting the control points inside feasible
convex regions. Many works [8, 14, 18] follow this underlying
property and show successful applications in aerial swarms.
However, this property indeed brings conservativeness, as
analyzed by Tordesillas and How [19], preventing a trajectory
from being aggressive near its physical limits. Besides, an n
order B-Spline is naturally n − 1 order continuous [6]. Thus
no continuity constraint is required as long as the B-Spline
has a qualified order. For a Bézier curve, its time profile
can be adjusted with acceptable complexity by its basis [7],
while this is rather complicated for a B-Spline due to its time
evaluation contains high nonlinearity. MINCO [24] is a newly
developed trajectory representation specialized for integrator
chain systems. The core feature of MINCO is that it efficiently
handles a wide variant of constraints while retains spatial
and temporal optimality. By discretizing the trajectory to add
constraints, MINCO is less conservative but requires further
checks after getting the solution. Although MINCO is the
most complicated representation and requires a sophisticated
implementation, it provides a solid fundamental for spatial-
temporal drone swarm planning.

B. Decentralized Multicopter Swarms

For decentralized strategies, VO (velocity obstacle) is a
lightweight approach to generate collision-free control com-
mands [21, 22]. However, it does not produce trajectories
with high-order continuity. Thus it is hard for a multicopter
to execute. Arul and Manocha [1] incorporate VO into an
MPC as velocity constraints, which improves the trajectory
quality significantly. Moreover, MPC is widely used in the
literature on aerial swarm robotics. Van Parys and Pipeleers
[23] achieve formation control for a group of vehicles. Luis
and Schoellig [10] use distributed MPC to perform point-to-
point swarm transitions. Except that, Chen et al. [3] imple-
ments SCP for multiagent trajectory planning in non-convex
scenarios by tightening collision constraints incrementally.
However, the above methods require synchronization between
the replans of different agents, which is hard to be guar-
anteed in real-world. To further decouple the system, Liu
et al. [9], Tordesillas and How [18] propose decentralized
and asynchronous planning strategies for drones to avoid
static/dynamic obstacles and inter-vehicle collisions. However,
the above optimization-based methods require at least tens
of milliseconds, even several seconds, to compute a control
command or a trajectory. What’s more, those algorithms are
only validated through simulations without integrating sensing,
mapping, and localization. Early decentralized experimental
results have been shown by McGuire et al. [11]. However, the
naive minimum navigation method in that paper is doomed
to produce discrete control commands with no consideration
of system constraints. Recently, Zhou et al. [26] builds up a

[Technical Report] FAST Lab, Zhejiang University

TABLE I: Pros and cons of trajectory pa-
rameterization methods in several frequently
concerned aspects. More descriptions of these
methods, including implementations, related
papers, and detailed comparisons, are presented
in Sec. II-A.

Method Continuity Safety
Dynamical
Feasibility

Temporal
Optimization

Implementation
Difficulty

Polynomial Extra

Overhead

By Discretization
Coupled

Easy

Bézier Curve Analytical but

Conservative
Medium

B-Spline
By Nature

Intractable

MINCO By Discretization Decoupled Difficult

fully autonomous multicpoter swarm system using B-Spline
parameterized trajectories. Nevertheless, the difficulty of time
adjustment of B-Spline curves results in a twisty trajectory
shape when multiple agents need to pass through the same
area. However, this limitation is broken in the proposed
method.

III. SPATIAL-TEMPORAL TRAJECTORY OPTIMIZATION
FOR SWARMS

A. Overview

The capability of spatial-temporal optimization comes from
a recently developed trajectory representation named TMINCO

[24]. It’s basic definition and features are explained in
Sec.III-B. Then Sec.III-C is a general description of how
to add various continuous-time constraints to TMINCO tra-
jectories: by constraint quadrature. Finally in Sec.III-D, we
formulate an unconstrained nonlinear optimization, which is
then solved by gradient-decent methods. To solve it in this
way, costs and gradients of various objectives are defined and
derived in Sec.III-D as well.

B. MINCO Trajectory Class

Thanks to the differential flatness of multicopters [12], their
motion planning is sufficient to be directly performed on a
time differentiable curve. In this report, we adopt TMINCO

[24] for our trajectory representation, which is a minimum
control polynomial trajectory class defined as

TMINCO =
{
p(t) : [0, T] 7→ Rm

∣∣∣ c =M(q,T),

q ∈ Rm(M−1), T ∈ RM>0

}
,

where p(t) is an m-dimensional M -piece polynomial trajec-
tory with degree N = 2s− 1, s the order of the relevant inte-
grator chain, c = (cT

1 , . . . , c
T
M)T ∈ R2Ms×m the polynomial

coefficient, q = (q1, . . . ,qM−1) the intermediate waypoints
and T = (T1, T2, . . . , TM)T the time allocated for all pieces.
Specifically, the trajectory is evaluated as

p(t) = pi(t− ti−1), ∀t ∈ [ti−1, ti]. (1)

The i-th piece pi(t) : [0, Ti] 7→ Rm is defined by

pi(t) = cT
i β(t), ∀t ∈ [0, Ti], (2)

where β(t) := [1, t, · · · , tN]T is the natural basis, ci ∈ R2s×m

the coefficient matrix, Ti = ti − ti−1 and T =
∑M
i=1 Ti.

The core of TMINCO is the parameter mapping c =M(q,T)
constructed from Theorem 2 in [24]. Technically, the mapping

…

𝑇𝑇1 𝑇𝑇2 𝑇𝑇𝑀𝑀−1 𝑇𝑇𝑀𝑀

𝑝𝑝(𝑡𝑡)

network that shares trajectories and performs on-demand time

𝐜𝐜1𝛽𝛽(𝑡𝑡)

𝐪𝐪1

𝐜𝐜2𝛽𝛽(𝑡𝑡)

𝐜𝐜𝑀𝑀−1𝛽𝛽(𝑡𝑡)

𝐜𝐜𝑀𝑀𝛽𝛽(𝑡𝑡)𝐪𝐪2
𝐪𝐪𝑀𝑀−1

𝐪𝐪𝑀𝑀−2

𝐩𝐩𝟐𝟐,𝟎𝟎

𝐩𝐩𝟐𝟐,𝟏𝟏

𝐩𝐩𝟐𝟐,𝟐𝟐
𝐩𝐩𝟐𝟐,𝟑𝟑

𝐩𝐩𝟐𝟐,𝟒𝟒

Fig. 4: This figure illustrates the parameters of MINCO trajectory
representation and its constraint evaluation. The trajectory is directly
parameterized by every waypoint qi and time Ti. Red dots represent
constraint points p̊ (introduced in Sec. III-C), where any constraint
is evaluated and propagated to every qi and Ti.

directly constructs a minimum control trajectory for an m-
dimensional s-integrator chain for any specified initial and
terminal conditions. An instance in TMINCO is intuitively
shown in Fig. 4. Since this report focuses on swarm planning,
we only intuitively introduce the features of TMINCO. Detailed
proofs are presented in [24].

Feature 1: Compactly represented by q and T, TMINCO

is a class of polynomial trajectories satisfying the following
control effort minimization:

min
p(t)

∫ tM

t0

p(s)(t)TWp(s)(t)dt, (3a)

s.t . p[s−1](t0) = p̄o, p
[s−1](tM) = p̄f , (3b)

p(ti) = qi, 1 ≤ i < M, (3c)
ti−1 < ti, 1 ≤ i ≤M, (3d)

where W ∈ Rm×m is a diagonal matrix with positive entries,
p̄o ∈ Rms and p̄f ∈ Rms the specified initial and terminal
conditions, qi ∈ Rm is the given intermediate waypoints that
the trajectory is enforced to pass at time ti.

Feature 2: The evaluation and differentiation of the map-
ping c =M(q,T) enjoys linear complexity. A more specific
correspondence can be expressed as the following function

M(T)c = b(q), (4)

where M(T) ∈ R2Ms×2Ms is a banded matrix with non-
singularity for any T � 0 ensured by Theorem 2 in [24],
b(q) ∈ R2Ms×m. The conversion between these two trajectory
representations, i.e., (c,T) and (q,T) is achieved using
Banded PLU Factorization with O(M) linear time and space
complexity. The evaluation is extremely fast, which takes
about 1µs per piece for minimum-jerk trajectory generation
on a desktop CPU.

Feature 3: Feature 2 allows any user-defined objective or
penalty function F (c,T) with available gradients applicable

[Technical Report] FAST Lab, Zhejiang University

to TMINCO parameterized in (q,T). Specifically, the corre-
sponding objective of TMINCO is computed as

H(q,T) = F (M(q,T),T). (5)

Then the mapping c = M(q,T) gives a linear-complexity
way to compute ∂H/∂q and ∂H/∂T from the corresponding
∂F/∂c and ∂F/∂T. After that, a high-level optimizer is able
to optimize the objective efficiently.

C. Time Integral Constraints

The way how various constraints are implemented closely
relevant to trajectory parameterization methods. Conven-
tionally, requirements for dynamical feasibility and colli-
sion avoidance are formulized as functional-type constraints
G(p(t), . . . , p(s)(t)) � 0,∀t ∈ [0, T]. However, this formula-
tion cannot be directly handled by constrained optimization,
since G contains infinitely many inequality constraints. Thus,
we transform G into a finite-dimensional one via integral of
constraint violation. Practically, the integral is transformed
into weighted sum JΣ(c,T) of the sampled penalty function.
In most cases that constraints are decoupled, i.e., constraints
G(p[s](t)) with ti ≤ t < ti+1 are merely determined by ci and
Ti, the penalty for i-th trajectory piece is computed as

Ji(ci, Ti, κi) =
Ti
κi

κi∑
j=0

ω̄jχ
T max (G(ci, Ti,

j

κi
),0)3, (6)

where κi is the sample number on the i-th piece, χ ∈ Rng

≥0

a vector of penalty weights with appropriately large en-
tries, (ω̄0, ω̄1, . . . , ω̄κi−1, ω̄κi

) = (1/2, 1, · · · , 1, 1/2) are the
quadrature coefficients following the trapezoidal rule [15]. We
define the points determined by {ci, Ti, j/κi} as constraint
points p̊i,j = pi((j/κi)Ti) with pi(t) the i-th polynomial
piece. Then G(ci, Ti, j/κi) = G(p̊i,j). Note that p̊i,κi

=
p̊i+1,0. The cubic penalty is used here for its twice continuous
differentiability. JΣ(c,T) is then defined as the summation:

JΣ(c,T) =

M∑
i=1

Ji(ci, Ti, κi). (7)

Since the gradients w.r.t. (c,T) are constructed from all
(ci,Ti), we only give gradient templates to ci and Ti using
the chain rule,

∂JΣ

∂ci
=
∂JΣ

∂G
∂G
∂ci

, (8)

∂JΣ

∂Ti
=
Ji
Ti

+
∂JΣ

∂G
∂G
∂t

∂t

∂Ti
, (9)

∂JΣ

∂G
= 3

Ti
κi

κi∑
j=0

ω̄j max (G(ci, Ti,
j

κi
),0)2 ◦ χ. (10)

∂t

∂Ti
=

j

κi
, t =

j

κi
Ti. (11)

From above equations, once the gradients of constraints G
relative to polynomial coefficients ci and time t are evaluated,
the gradients of JΣ(c,T) are efficiently computed.

D. Optimization Problem Construction

According to the above definitions of trajectory parameter-
ization and constraints imposition, we present the complete
optimization for trajectory planning in this section. The basic
requirements on a desired trajectory are smoothness, dynam-
ical feasibility, as well as safety among obstacles and other
agents. Extra objectives such as minimization of control effort
and execution time are also desired. In this report, we adopt
TMINCO to address above all concerns. Since TMINCO is
naturally guaranteed smooth by Theorem 2 in [24], no extra
effort needs to be paid on trajectory continuity.

In this work, we formulate the trajectory generation as an
unconstrained optimization problem:

min
q,T

∑
x

λxJx, (12)

where Jx are JΣ instances, λx is the weight for either an
objective or penalty, subscripts x = {e, t, d, o, w, u} represent
control effort (e), execution time (t), dynamical feasibility (d),
obstacle avoidance (o), swarm reciprocal avoidance (w), and
uniform distribution of constraint points (u). Commonly, a
sufficiently large weight suffices for penalties. The problem
is solved via unconstrained nonlinear optimization.

1) Control Effort Je: Control effort follows the definition in
Eq. 3b. Without loss of generality, consider a single dimension
of the i-th piece pi(t) : [0, Ti] 7→ R of a polynomial spline,
its derivatives with respect to ci and Ti are

∂Je
∂ci

= 2

(∫ Ti

0

β(s)(t)β(s)(t)
T

dt

)
ci, (13)

∂Je
∂Ti

= cT
i β

(s)(Ti)β
(s)(Ti)

T

ci. (14)

2) Execution Time Jt: A shorter execution time is desirable,
so we also minimize the weighted total execution time Jt =∑M
i=1 Ti. Obviously, its gradient ∂Jt/∂c = 0, ∂Jt/∂T = 1.
3) Dynamical Feasibility Penalty Jd: For the trajectory

generation of the multicopter, dynamical feasibility is always
guaranteed by limiting the trajectory’s derivatives. In our work,
we limit the amplitude of velocity, acceleration, and jerk. Note
that the dynamical feasibility penalty is acquired using time
integral in Sec. III-C. Following the Eq. 6, constraints of
velocity, acceleration, and jerk are denoted as

Gv = ṗ(t)2−v2
m, Ga = p̈(t)2−a2

m, Gj =
...
p (t)2−j2

m, (15)

where vm, am, jm are maximum allowed velocity, acceleration
and jerk. The corresponding gradients are

∂Gx
∂ci

= 2β(n)(t)p(n)(t)T,
∂Gx
∂t

= 2β(n+1)(t)Tcip
(n)(t),

(16)
where x = {v, a, j}, n = {1, 2, 3}, and t = jTi/κi+ ti−1, t ∈
[ti−1, ti], respectively. Substituting Eq. 15 into 6 and 16 into
Eq.8, 9 gets the penalty and the gradient of ci and Ti;

[Technical Report] FAST Lab, Zhejiang University

Enlarging
𝑑 = (𝐩key − 𝐬) T𝐯

network that shares trajectories and performs on-demand time

𝐯𝐬

𝐩key

Unsafe Trajectory A Safe Solution

Fig. 5: Collision avoidance object formulation. The red curve is the
optimized trajectory; the blue curve is a collision-free path starts
and ends on the red curve. Then a fixed point s with a vector v is
generated to determine the collision penalty.

4) Obstacle Avoidance Penalty Jc: In this work, we adopt
the front-end of collision evaluation from Zhou et al. [27]. Also
a brief description is given here. In [27], the information for an
unsafe trajectory to escape collision is extracted by comparing
the unsafe initial trajectory with a collision-free guiding path.
As depicted in Fig. 5, a fixed safe point s with a fixed safe
vector v is recorded by a corresponding key point pkey on the
trajectory. Then the distance of pkey to the obstacle which the
{s,v} pair generated is defined as

d(pkey, {s,v}) = (pkey − s)Tv. (17)

Using the distance information, the trajectory deforms itera-
tively during optimization. If pkey discovers a new obstacle,
a new {s,v} pair is stacked to pkey’s records. Therefore each
pkey may record several {s,v} pairs.

In this work, constraint points p̊i,j with 1 ≤ i ≤ M, 0 <
j ≤ κi are selected as the key points pkey. To enforce safety,
we penalize distance to obstacles less than a safe clearance
Co. Therefore, obstacle avoidance constraint is defined as

Go(p(t)) = (· · · ,Gok(p(t)), · · ·)T ∈ RNsv , (18)
Gok(p(t)) = Co − d(p(t), {s,v}k), (19)

where Nsv is the number of {s,v} pairs recorded by a single
p̊i,j and t = jTi/κi the relative time on this piece. For the
case that Co ≥ d(p(t), {q,v}k), 0), the gradient is computed:

∂Gok
∂ci

= −β(t)vT,
∂Gok
∂t

= −vTṗ(t). (20)

Otherwise, ∂Gok/∂ci = 02s×m, ∂Gok/∂t = 0.
5) Swarm Reciprocal Avoidance Penalty Jw: In this work,

a non-cooperative swarm framework is adopted, which means
that one agent receives other agents’ trajectories as constraints
and generates trajectories only for itself. Considering the u-
th agent in a multicpoter swarm containing U agents, swarm
collision avoidance is guaranteed when the trajectory pu(t)
of agent u maintains a distance greater than a safe clearance
Cw to all the trajectories at the same global timestamps of
other agents as depicted in Fig. 6. However, one caution must
be taken that we have always been using a relative time t =
jTi/κi in our optimization, while the other agents’ trajectories
take an absolute timestamp τ = T1 + · · ·+Ti−1 +jTi/κi. This
indeed makes the penalty evaluated on the i-th piece depend
on all its preceding piece times. Thus we denote by Gi,jw the

𝑡𝑚𝑖𝑛 𝑡𝑚𝑎𝑥

network that shares trajectories and performs on-demand time

Other Agents’
Trajectories

My Trajectory

Fig. 6: Collision avoidance formulation between two agents. Gray
dotted arrows indicate states at the identical global time. The goal of
reciprocal avoidance is to maintain a safe distance at any time.

constraint evaluated at the j-th constraint point on the i-th
piece of pu(t). Therefore the reciprocal avoidance constraint
is defined as

Gi,jw (pu(t), τ) = (· · · ,Gwk
(pu(t), τ), · · ·)T ∈ RU , (21)

Gi,jwk
(pu(t), τ) =

{
C2
w − d2(pu(t), pk(τ)) k 6= u,

0 k = u,
(22)

d(pu(t), pk(τ)) =
∥∥∥E1/2(pu(t)− pk(τ))

∥∥∥ , (23)

where pk(τ) is the trajectory of the k-th agent that the u-th
agent has to avoid at the same but relative stamp t. The matrix
E := diag(1, 1, 1/c) with c > 1 transforms Euclidean distance
into ellipsoidal distance with the minor axes at the z-axis to
relieve downwash risk from rotors. Squared distance is used
to avoid square root operations.

When C2
w ≥ d2(pu(t), pk(τ)), the gradient to ci is

∂Gi,jwk

∂ci
=

{
−2β(t)(pu(t)− pk(τ))TE k 6= u,

0 k = u.
(24)

Then substituting the sum of Gi,jwk
into Eq.8 gets the gradient

∂Jw/∂ci. However, the gradient to T is more complicated,
since the gradient template equation 9 does not hold here.
Considering previous time profile, the proper gradient to the
preceding time Tl for any 1 ≤ l ≤ i should be computed as

∂Jw
∂Tl

=

U∑
k=1

∂Jwk

∂Tl
=

U∑
k=1

M∑
i=1

κi∑
j=0

∂J i,jwk

∂Tl
, (25)

∂J i,jwk

∂Tl
=
J i,jwk

Tl
+
∂J i,jwk

∂Gi,jwk

∂Gi,jwk

∂Tl
, (26)

∂Gi,jwk

∂Tl
=
∂Gi,jwk

∂t

∂t

∂Tl
+
∂Gi,jwk

∂τ

∂τ

∂Tl
, (27)

∂Gi,jwk

∂t
=

{
2 (pk(t)− pu(τ))

T
Eṗu(t) k 6= u,

0 k = u,
(28)

∂Gi,jwk

∂τ
=

{
2 (pu(t)− pk(τ))

T
Eṗk(τ) k 6= u,

0 k = u,
(29)

∂t

∂Tl
=

{
j
κi

l = i,

0 l < i,

∂τ

∂Tl
=

{
j
κi

l = i,

1 l < i.
(30)

[Technical Report] FAST Lab, Zhejiang University

network that shares trajectories and performs on-demand time

Skipped

Fig. 7: Non-uniformly distributed constraint points (red dots) fail to
detect a thin obstacle.

Note that J i,jwk
denotes the swarm penalty of j-th constraint

point at i-th polynomial piece to agent k’s current trajectory.
The trajectory pk(τ) for any other agent is already known,
thus its derivatives are all available in computation.

6) Uniform Distribution Penalty Jv: The purpose of this
penalty is to make the constraint points p̊i,j equally spaced for
all 1 ≤ i ≤M and 0 < j ≤ κi, which is a simpler substitution
to the space-uniform variant of TMINCO mentioned in [24].
It is necessary since if all TMINCO parameters q and T are
optimized freely, some pieces of the trajectory tend to vanish
to reduce the total cost. This phenomenon is harmful for
trifold reasons. Firstly, Ti = 0 for the i-th trajectory piece
is an undefined singular point for TMINCO, which does not
consider consecutive aligned waypoints. Secondly, since the
spatial collision avoidance is constrained by a finite number
of constraint points, non-uniform distribution increases the
possibility of skipping some tiny or thin obstacles, as shown
in Fig. 7. Thirdly, since we compute the distance to obstacles
following Eq. 17, the obstacles are modeled as planes. The
accuracy of this modeling decreases when constraint points
move along the plane.

To enforce the uniform distribution of constraint points, we
penalize the variance of the squared distances between each
pair of adjacent constraint points. For simplicity, we denote
Nc =

∑M
i=0 κi as the total number of distances. The variance

is computed as

Ju = E
[
D2
]
− E [D]

2
=

1

Nc
‖D‖22 −

1

N2
c

‖D‖21 , (31)

where D ∈ RNc is defined by

D =
(
‖p̊1,1 − p̊1,0‖22 , · · · , ‖p̊M,κM

− p̊M,κM−1‖22
)
. (32)

D is the squared distance vector for all Nc + 1 constraint
points. Denote by Dk the k-th entry in D based on the
conversion between two kinds of indices k = j +

∑i−1
l=1 κl.

The gradient is computed as

∂Ju
∂ci

=

κi∑
j=1

β

(
jTi
κi

)(
∂Ju
∂p̊i,j

)T

, (33)

∂Ju
∂Ti

=
1

κi

κi∑
j=1

j

(
∂Ju
∂p̊i,j

)T

cT
i β̇

(
jTi
κi

)
, (34)

∂Ju
∂p̊i,j

=
4

Nc

(
Dk−1 −

‖D‖1
Nc

)
(p̊i,j − p̊i,j−1) ,

− 4

Nc

(
Dk −

‖D‖1
Nc

)
(p̊i,j+1 − p̊i,j) . (35)

network that shares trajectories and performs on-demand time

Fig. 8: Scalability evaluation in obstacle-free scenarios. Agents in the
Worst Case that considering all the others achieve linear complexity
relative to the agent amount. If ignoring agents’ trajectories outside
the planning horizon, the complexity is further reduced.

EGO-Swarm

network that shares trajectories and performs on-demand time

Proposed

Fig. 9: Passing through a narrow gate with EGO-Swarm and the
proposed planner. Due to spatial-temporal planning capability, the
proposed method achieves smoother trajectories

7) Temporal Constraint Elimination: An open-domain con-
straint is T � 0. Unlike previous constraints from Sec.III-D3
to III-D6 which are transformed into penalty functions, this
constraint is directly eliminated by a diffeomorphism map as
is done in [24]:

Ti = eτi , (36)

where τi is the unconstrained virtual time. Note that the mean-
ing of notion τ here is different from Sec.III-D5. Gradients
w.r.t. Ti is propagated to τi following ∂J/∂τi = (∂J/∂Ti)e

τi .
More generally, any twice continuously differentiable bijection
f : R 7→ R>0 suffices for this map.

IV. BENCHMARK

A. Large Scale Simulation

We conduct tests on large-scale planning scenarios, where
40 agents perform position exchanging on a circle with a
12.5m radius, as depicted in Fig.2.

B. Scalability

Since a non-cooperative swarm framework is adopted, the
complexity of the proposed method relative to agent number
U is O(U). What’s more, the complexity can be further
reduced based on a consensus that the capacity of a given
space is finite. Therefore, the received trajectory is neglected
if it is outside the planning horizon. Here we demonstrate the
scalability on replanning time of each agent in three scenarios.
In the Worst Case, the trajectory ignoring mechanism is
disabled. In the Line Arrangement case, agents start in a
straight line and fly to targets uniformly placed on another
line 50m away. In the Plane Arrangement case, agents are

[Technical Report] FAST Lab, Zhejiang University

TABLE II: Comparisons in an 8×
8m empty space containing eight
agents with radius of 0.25m. Max-
imum velocity and acceleration are
set to 1.7m/s and 6m/s2. Safety
Ratio is the minimum agent inter-
val divided by two times of radius.
int(a2) and int(j2) are time integral
of squared acceleration and jerk,
indicating smoothness and control
effort. The units of time and dis-
tance are seconds and meters.

Online/
Offline

Method
Solver
Time

Traj.
Time

Traj.
Length

Safety
Ratio

Safe? int(a2) int(j2)

SCP, h scp=0.3s 1.46 7.65 9.64 0.267 No 2.63 7.01

SCP, h scp=0.17s 7.72 7.40 9.70 0.480 No 3.14 17.5

RBP,no batches 0.320 15.4 11.3 1.02 Yes 1.30 0.608
Offline

RBP,batch size=4 0.413 15.4 11.5 1.06 Yes 1.32 0.604
Mader 0.0239 7.50 12.2 1.37 Yes 12.0 125.1

EGO, horizon=7.5m 0.000554 8.12 10.1 1.34 Yes 7.39 72.0

EGO, horizon=10m 0.000844 8.17 10.3 1.62 Yes 8.15 94.1

Proposed, κi = 5 0.000465 7.57 9.70 1.17 Yes 5.33 30.4

Online

Proposed, κi = 8 0.000557 7.58 9.71 1.22 Yes 5.15 28.2

TABLE III: Comparisons in a 20×20×5m
space with 100 obstacles and 8 agents. This
table shares the same parameters, units, and
notations as Tab .II.

Method
Solver
Time

Traj.
Time

Traj.
Length

Safety
Ratio

Dist.
to Obs.

Safe? int(a2) int(j2)

MADER 0.0539 19.4 30.25 1.52 0.466 Yes 39.6 960.9

EGO 0.000882 19.6 29.8 1.57 0.623 Yes 20.3 198.4

Proposed 0.000755 16.9 29.1 1.22 0.600 Yes 13.5 75.3

initialized on a plane with targets uniformly placed on another
plane. The order of targets in all tests is randomly selected.
Results are shown in Fig. 8

C. Comparisons

We compare the proposed planner against SCP [2], RBP
[14], MADER [18], and EGO (EGO-Swarm) [26]. All pre-
sented data is the average of 8 agents in 10 runs, except for
Safety Ratio and Distance to Obstacles (in abbreviation Dis.
to Obs.) are the minimal value in all records.

1) Comparison of Reciprocal Collision Avoidance without
Static Obstacles: Results are given in Tab. II. A bold term
indicates a better value in the corresponding category (On-
line/Offline), while an underlined term indicates the best value
among all planners. Indicated by Tab. II, SCP achieves a better
flight time at the sacrifice of trajectory safety. RBP achieves
better dynamical performance int(a2) and int(j2) with the
cost of a relatively long flight time. Both of these methods fail
to balance various aspects of trajectory quality. Compared with
offline methods, three online planners show more balances
while requiring less computation by orders of magnitude.
Among them, MADER shows more conservativeness due
to the simplex representation of the trajectory, although the
simplex enjoys almost the minimum volume.

2) Comparison of Reciprocal Collision Avoidance with
Static Obstacles: Results are presented in Tab. III for three
online planners. Note that MADER uses a pre-built map
while EGO-Swarm and the proposed method perform online
sensing and mapping. From the data, MADER demands
aggressive maneuvers for the vehicle while the other two
are more superior in their trajectory smoothness. Another
experiment to intuitively visualize the benefits of temporal
optimization is illustrated in Fig. 9.

C
am

era

Flight controller

Agent 2

Flight controller

C
am

era

Agent 1

Broadcast Network

Local
Mapping

SE3 ControllerVIO

Frame
Alignment

Agent
Removal

C
am

era

Flight controllerIMU

Agent 0

My
Trajectories

Drone
Detection

Drone Pixels

Deviation
Observation

G
ray

D
ep

th

Planning

Aligned Trajectory

Odometry

Others’ Trajectories

Depth

Fig. 10: System Architecture.

3) A Brief Conclusion: From the comparison, the proposed
method achieves top-level performance with the shortest com-
putation time. This achievement is attributed to low complexity
of TMINCO-based problem formulation and decoupling of
spatial-temporal parameters. All the programmers run on an
Intel Core i7-10700KF CPU at 5.1GHz.

V. REAL-WORLD EXPERIMENTS

A. System Architecture

System architecture is depicted in Fig. 10. A broadcast
network that shares trajectories and performs on-demand time
synchronization is the only connection among all agents.
Therefore it is less coupled than [26].

In Fig. 10, three of the modules may be confusing, here is
a simple explanation. The module ”Drone Detection” is for
detecting other agents witnessed. The module ”Frame Align-
ment” compensates single agent localization drift using the

[Technical Report] FAST Lab, Zhejiang University

(a) Empty Space (b) Narrow Gate (c) Dense Environment

(d) Trajectory and map created during the flight in dense environment.

Fig. 11: Composite images of indoor experiments, in which three drones fly to three reverse placed targets. Dashed lines indicate the relative
positions in the same photographs. As shown in the images, agents maintain a safe distance from each other while avoiding obstacles. Note
that the trajectories are smooth, and there is no detour.

position deviation acquired from ”Drone Detection” module.
The module ”Agent Removal” removes pixels of other agents
from depth images, since these pixels can interfere the depth-
based obstacle mapping. A detailed explanation of these three
modules is in our previous work [26].

B. Indoor

We present several indoor experiments at a speed limit
of 3.0m/s for empty space and 2.0m/s for narrow gate
and obstacle-rich scenarios, as depicted in Fig.11. The left
one shows three quadrotors perform a cross flight in empty
space where reciprocal collision avoidance is necessary. In the
middle one, quadrotors manage to pass through a narrow gate
one after another. In the right figure, we set up a cluttered
environment composed of vertical and horizontal obstacles,
where the narrowest gate is less than 1m. In such a cluttered
environment, three quadrotors manage to navigate across this
environment sequentially and smoothly.

C. Outdoor

Outdoor experiments are presented to validate that the
proposed system is capable of field operations. Snap-
shots of this experiment with the map built during the
flight are shown in Fig. 1. Please watch the video at
https://www.youtube.com/watch?v=w5GDMpjAoVQ for more
information. The hardware settings are the same as [7].

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a decentralized spatial-temporal
trajectory planning framework for multicopter swarms. Our
framework is powered by TMINCO trajectory class capa-
ble of spatial-temporal deformation, and the time integral
penalty functional based on constraint transcription. All these
components enjoy efficiency originating from low-complexity.
Extensive benchmarks are performed to show the speedup by

orders of magnitude and the top-level solution quality. Real-
word experiments also demonstrate the wide applicability of
our framework.

It’s worth noting that the formulation of reciprocal collision
avoidance in Sec. III-D5 enables the planner to avoid moving
obstacles as well. Since we use non-cooperative swarms,
other agents and moving obstacles behave identically from the
planner’s view. However, we exclude this module in the current
work due to the immature front-end of moving object detection
and prediction, which is taken as the future work to enable
fully autonomous aerial swarms in dynamical environments.

REFERENCES

[1] Senthil Hariharan Arul and Dinesh Manocha. DCAD:
Decentralized Collision Avoidance With Dynamics Con-
straints for Agile Quadrotor Swarms. IEEE Robotics and
Automation Letters, 5(2):1191–1198, 2020.

[2] Federico Augugliaro, Angela P Schoellig, and Raffaello
D’Andrea. Generation of Collision-Free Trajectories
for a Quadrocopter Fleet: A Sequential Convex Pro-
gramming Approach. In 2012 IEEE/RSJ international
conference on Intelligent Robots and Systems (IROS),
pages 1917–1922. IEEE, 2012.

[3] Yufan Chen, Mark Cutler, and Jonathan P How. Decou-
pled Multiagent Path Planning via Incremental Sequen-
tial Convex Programming. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages
5954–5961. IEEE, 2015.

[4] Soon-Jo Chung, Aditya Avinash Paranjape, Philip
Dames, Shaojie Shen, and Vijay Kumar. A Survey on
Aerial Swarm Robotics. IEEE Transactions on Robotics,
34(4):837–855, 2018.

[5] Flaviu Cristian. Probabilistic Clock Synchronization.
Distributed Computing, 3(3):146–158, 1989.

https://www.youtube.com/watch?v=w5GDMpjAoVQ
https://ieeexplore.ieee.org/abstract/document/8962047
https://ieeexplore.ieee.org/abstract/document/8962047
https://ieeexplore.ieee.org/abstract/document/8962047
https://ieeexplore.ieee.org/abstract/document/6385823
https://ieeexplore.ieee.org/abstract/document/6385823
https://ieeexplore.ieee.org/abstract/document/6385823
https://ieeexplore.ieee.org/abstract/document/7140034/
https://ieeexplore.ieee.org/abstract/document/7140034/
https://ieeexplore.ieee.org/abstract/document/7140034/
https://ieeexplore.ieee.org/abstract/document/8424838
https://ieeexplore.ieee.org/abstract/document/8424838
https://link.springer.com/article/10.1007/BF01784024#citeas

[Technical Report] FAST Lab, Zhejiang University

[6] Carl De Boor. A practical guide to splines, volume 27.
Springer-verlag New York, 1978.

[7] Fei Gao, Luqi Wang, Boyu Zhou, Xin Zhou, Jie Pan,
and Shaojie Shen. Teach-repeat-replan: A Complete
and Robust System for Aggressive Flight in Complex
Environments. IEEE Transactions on Robotics, 36(5):
1526–1545, 2020.

[8] Wolfgang Hönig, James A Preiss, TK Satish Kumar,
Gaurav S Sukhatme, and Nora Ayanian. Trajectory
Planning for Quadrotor Swarms. IEEE Transactions on
Robotics, 34(4):856–869, 2018.

[9] Zuxin Liu, Baiming Chen, Hongyi Zhou, Guru Koushik,
Martial Hebert, and Ding Zhao. MAPPER: Multi-Agent
Path Planning with Evolutionary Reinforcement Learn-
ing in Mixed Dynamic Environments. arXiv preprint
arXiv:2007.15724, 2020.

[10] Carlos E Luis and Angela P Schoellig. Trajectory
Generation for Multiagent Point-To-Point Transitions via
Distributed Model Predictive Control. IEEE Robotics and
Automation Letters, 4(2):375–382, 2019.

[11] KN McGuire, Christophe De Wagter, Karl Tuyls,
HJ Kappen, and Guido CHE de Croon. Minimal Nav-
igation Solution for a Swarm of Tiny Flying Robots to
Rxplore an Unknown Environment. Science Robotics, 4
(35), 2019.

[12] Daniel Mellinger and Vijay Kumar. Minimum Snap
Trajectory Generation and Control for Quadrotors. In
2011 IEEE International Conference on Robotics and
Automation (ICRA), pages 2520–2525. IEEE, May 2011.

[13] Helen Oleynikova, Michael Burri, Zachary Taylor, Juan
Nieto, Roland Siegwart, and Enric Galceran. Continuous-
Time Trajectory Optimization for Online UAV Replan-
ning. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5332–5339.
IEEE, 2016.

[14] Jungwon Park, Junha Kim, Inkyu Jang, and H Jin Kim.
Efficient Multi-Agent Trajectory Planning with Feasibil-
ity Guarantee using Relative Bernstein Polynomial. In
2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 434–440. IEEE, 2020.

[15] William H Press, H William, Saul A Teukolsky, A Saul,
William T Vetterling, and Brian P Flannery. Numerical
Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge University Press, 2007.

[16] Joseph Redmon and Ali Farhadi. Yolov3: An Incremental
Improvement. arXiv preprint arXiv:1804.02767, 2018.

[17] Charles Richter, Adam Bry, and Nicholas Roy. Polyno-
mial Trajectory Planning for Aggressive Quadrotor Flight
in Dense Indoor Environments. In Robotics Research,
pages 649–666. Springer, 2016.

[18] Jesus Tordesillas and Jonathan P How. MADER: Trajec-
tory Planner in Multi-Agent and Dynamic Environments.
arXiv preprint arXiv:2010.11061, 2020.

[19] Jesus Tordesillas and Jonathan P How. MINVO basis:
Finding Simplexes with Minimum Volume Enclosing
Polynomial Curves. arXiv preprint arXiv:2010.10726,

2020.
[20] Jesus Tordesillas, Brett T Lopez, and Jonathan P How.

Faster: Fast and Safe Trajectory Planner for Flights in
Unknown Environments. In 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 1934–1940. IEEE, 2019.

[21] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh
Manocha. Reciprocal n-Body Collision Avoidance. In
Robotics Research, pages 3–19. Springer Berlin Heidel-
berg, 2011.

[22] Jur Van Den Berg, Jamie Snape, Stephen J Guy, and
Dinesh Manocha. Reciprocal Collision Avoidance With
Acceleration-Velocity Obstacles. In 2011 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 3475–3482. IEEE, 2011.

[23] Ruben Van Parys and Goele Pipeleers. Distributed Model
Predictive Formation Control with Inter-Vehicle Vollision
Avoidance. In 2017 11th Asian Control Conference
(ASCC), pages 2399–2404. IEEE, 2017.

[24] Zhepei Wang, Xin Zhou, Chao Xu, and Fei Gao. Geo-
metrically Constrained Trajectory Optimization for Mul-
ticopters. arXiv preprint arXiv:2103.00190, 2021.

[25] Hao Xu, Luqi Wang, Yichen Zhang, Kejie Qiu, and
Shaojie Shen. Decentralized Visual-Inertial-UWB Fusion
for Relative State Estimation of Aerial Swarm. In
2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 8776–8782. IEEE, 2020.

[26] Xin Zhou, Jiangchao Zhu, Hongyu Zhou, Chao Xu,
and Fei Gao. EGO-Swarm: A Fully Autonomous and
Decentralized Quadrotor Swarm System in Cluttered
Environments. arXiv preprint arXiv:2011.04183, 2020.

[27] Xin Zhou, Zhepei Wang, Hongkai Ye, Chao Xu, and
Fei Gao. EGO-Planner: An ESDF-Free Gradient-Based
Local Planner for Quadrotors. IEEE Robotics and Au-
tomation Letters, 6(2):478–485, 2021.

https://www.springer.com/gp/book/9780387953663
https://ieeexplore.ieee.org/abstract/document/9102390
https://ieeexplore.ieee.org/abstract/document/9102390
https://ieeexplore.ieee.org/abstract/document/9102390
https://ieeexplore.ieee.org/abstract/document/8424034
https://ieeexplore.ieee.org/abstract/document/8424034
https://arxiv.org/abs/2007.15724
https://arxiv.org/abs/2007.15724
https://arxiv.org/abs/2007.15724
https://ieeexplore.ieee.org/abstract/document/8598938
https://ieeexplore.ieee.org/abstract/document/8598938
https://ieeexplore.ieee.org/abstract/document/8598938
https://robotics.sciencemag.org/content/4/35/eaaw9710.abstract
https://robotics.sciencemag.org/content/4/35/eaaw9710.abstract
https://robotics.sciencemag.org/content/4/35/eaaw9710.abstract
https://ieeexplore.ieee.org/abstract/document/5980409/
https://ieeexplore.ieee.org/abstract/document/5980409/
https://ieeexplore.ieee.org/abstract/document/7759784
https://ieeexplore.ieee.org/abstract/document/7759784
https://ieeexplore.ieee.org/abstract/document/7759784
https://ieeexplore.ieee.org/abstract/document/9197162/
https://ieeexplore.ieee.org/abstract/document/9197162/
https://books.google.com.hk/books?id=1aAOdzK3FegC
https://books.google.com.hk/books?id=1aAOdzK3FegC
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
http://hdl.handle.net/1721.1/106840
http://hdl.handle.net/1721.1/106840
http://hdl.handle.net/1721.1/106840
https://arxiv.org/abs/2010.11061
https://arxiv.org/abs/2010.11061
https://arxiv.org/abs/2010.10726
https://arxiv.org/abs/2010.10726
https://arxiv.org/abs/2010.10726
https://ieeexplore.ieee.org/abstract/document/8968021
https://ieeexplore.ieee.org/abstract/document/8968021
https://link.springer.com/chapter/10.1007/978-3-642-19457-3_1
https://ieeexplore.ieee.org/abstract/document/5980408
https://ieeexplore.ieee.org/abstract/document/5980408
https://ieeexplore.ieee.org/abstract/document/8287550
https://ieeexplore.ieee.org/abstract/document/8287550
https://ieeexplore.ieee.org/abstract/document/8287550
https://arxiv.org/abs/2103.00190
https://arxiv.org/abs/2103.00190
https://arxiv.org/abs/2103.00190
https://ieeexplore.ieee.org/abstract/document/9196944
https://ieeexplore.ieee.org/abstract/document/9196944
https://arxiv.org/abs/2011.04183
https://arxiv.org/abs/2011.04183
https://arxiv.org/abs/2011.04183
https://ieeexplore.ieee.org/abstract/document/9309347/
https://ieeexplore.ieee.org/abstract/document/9309347/

	Introduction
	Related Works
	Trajectory Parameterization for Aerial Robots
	Decentralized Multicopter Swarms

	Spatial-Temporal Trajectory Optimization For Swarms
	Overview
	MINCO Trajectory Class
	Time Integral Constraints
	Optimization Problem Construction
	Control Effort Je
	Execution Time Jt
	Dynamical Feasibility Penalty Jd
	Obstacle Avoidance Penalty Jc
	Swarm Reciprocal Avoidance Penalty Jw
	Uniform Distribution Penalty Jv
	Temporal Constraint Elimination

	Benchmark
	Large Scale Simulation
	Scalability
	Comparisons
	Comparison of Reciprocal Collision Avoidance without Static Obstacles
	Comparison of Reciprocal Collision Avoidance with Static Obstacles
	A Brief Conclusion

	Real-World Experiments
	System Architecture
	Indoor
	Outdoor

	Conclusion and Future Work

