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A U T O N O M O U S  V E H I C L E S

Swarm of micro flying robots in the wild
Xin Zhou1,2, Xiangyong Wen1,2, Zhepei Wang1,2, Yuman Gao1,2, Haojia Li3, Qianhao Wang1,2, 
Tiankai Yang1,2, Haojian Lu1, Yanjun Cao2, Chao Xu1,2*, Fei Gao1,2*

Aerial robots are widely deployed, but highly cluttered environments such as dense forests remain inaccessible to 
drones and even more so to swarms of drones. In these scenarios, previously unknown surroundings and narrow 
corridors combined with requirements of swarm coordination can create challenges. To enable swarm navigation 
in the wild, we develop miniature but fully autonomous drones with a trajectory planner that can function in a 
timely and accurate manner based on limited information from onboard sensors. The planning problem satisfies 
various task requirements including flight efficiency, obstacle avoidance, and inter-robot collision avoidance, 
dynamical feasibility, swarm coordination, and so on, thus realizing an extensible planner. Furthermore, the pro-
posed planner deforms trajectory shapes and adjusts time allocation synchronously based on spatial-temporal joint 
optimization. A high-quality trajectory thus can be obtained after exhaustively exploiting the solution space within 
only a few milliseconds, even in the most constrained environment. The planner is finally integrated into the 
developed palm-sized swarm platform with onboard perception, localization, and control. Benchmark compari-
sons validate the superior performance of the planner in trajectory quality and computing time. Various real-world 
field experiments demonstrate the extensibility of our system. Our approach evolves aerial robotics in three aspects: 
capability of cluttered environment navigation, extensibility to diverse task requirements, and coordination as 
a swarm without external facilities.

INTRODUCTION
Science fiction films present multirobot aerial systems as a symbol 
of future technology. In Prometheus (2012), astronauts release sev-
eral micro-airborne units to explore an unknown alien ship before 
deciding which path to take. In Ender’s Game (2013), drone swarms 
surround the spaceship, forming a shield from alien attack and later 
clear a way for humans to win the battle. In Star Wars: Episode III 
(2005) and Blade Runner 2049 (2017), bustling yet orderly air traffic 
flows among skyscrapers are common in high-technology planets. 
The swarms’ capability of navigation and coordination in these films 
has attracted and inspired numerous researchers. Here, we take a 
step forward such a future (Movie 1).

With recent developments in computation, sensing, and com-
munication, aerial robots such as quadrotors have entered human 
life with extraordinary versatility, ranging from accurate to aggressive 
missions (1) and at a low price. Nikkei reports (2) that DJI’s Mavic 
Air 2, one of the best-selling drones, which has obstacle avoidance, 
tracking, and a 10-km communication distance, is made of compo-
nents only worth approximately $135. In addition, there are still an 
abundance of possibilities for drones in the market, with the value 
forecast to be $500 billion by 2028 (3).

For single-drone navigation, agile multicopter control systems 
are well developed (4). Furthermore, accurate localization using 
visual-inertial odometry (5, 6) has matured, which has built up a 
reliable and efficient perception system with probabilistic mapping 
(7). For collision avoidance and other safety requirements, various 
methods from reaction-based, as seen in (8), to planning-based (9, 10) 
are proposed. Such developments herald the dawn of aerial swarms 
in the wild that previously have only been imagined in science fiction.

Although single-drone autonomous navigation has been devel-
oped aggressively for both industrial (11, 12) and academic practices 
(13, 14), very rarely has comparable performance has been achieved 
by aerial swarm systems. Building on the development of individual 
drones with autonomy, here, we address the fundamental problems 
of how to navigate aerial swarms in cluttered wild environments 
autonomously, thus improving the applicability of swarms in a variety 
of real-world tasks. These tasks include the following: (i) providing 
disaster relief. In natural disasters like earthquakes and floods, a 
swarm of drones can search, guide, and deliver emergency supplies to 
trapped people (15). For example, in wildfires (16), agile multicopters 
can quickly collect information from a close view of the front line with-
out the risk of human injury. (ii) Aiding biological studies (17). 
Thanks to reduced drone size and weight, researchers can inspect a 
confined area without direct human contact to minimize ecological 
footprints. (iii) Dense air traffic system or ready-to-deploy transpor-
tation for rovers and drones landing on Mars. In these scenarios, 
transporters randomly fly between dense buildings. Therefore, both 
external and inter-vehicle collision avoidance is crucial (18). (iv) 
Collaborative transportation. When the payload weight exceeds the 
capacity of a single drone, multidrone formation flight is required (19).

Common requirements of the above tasks can be categorized into 
four aspects abbreviated as TEEM (trajectory optimality, extensibility, 
economical computing, and miniature size). Trajectory optimality 
indicates the mission quality and flight time. An optimality-concerned 
trajectory planner will not stop at a feasible solution but continues 
to try to find a nearly optimal one among all solutions. Such effi-
ciency is especially crucial in emergency and rescue scenarios, in 
which time is of essence. Extensibility refers to the diversity of avail-
able applications, so the system must be compatible with assorted 
task-specific objectives. Economical computing is important as well, 
which allows smaller embedded onboard computers, reduces the 
reaction time to environmental change and sudden events (20), and 
reserves as much available computing resource as possible for other 
user-defined tasks such as object detection and decision-making. 
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Last, all such capabilities should be placed into the smallest container 
because weight and volume are directly related to the flight time and 
acceptable narrow space.

Unfortunately, achieving these four aspects together is internally 
contradictory. Higher optimality mostly comes from sophisticated 
modeling and more iterations or trials in the solution space, all of 
which are achieved at the cost of increased computing time. Higher 
extensibility requires the problem to be defined in a more general 
form at the sacrifice of potential problem-specific optimization that 
can improve optimality and reduce computing time. Then, between 
optimality and extensibility, as various user-defined objectives are 
imposed, the problem becomes increasingly complex, which makes 
it challenging to find a solution. Only satisfying some basic require-
ments such as safety and feasibility while minimizing time and max-
imizing smoothness for aerial swarms is already a difficult problem 
(21, 22, 23) and is even more difficult to achieve simultaneously on 
a miniature platform. That is why previous studies are unable to 
take the step from structured, human-made environments to the 
unforeseen wild.

In the real world, various aerial swarms have been deployed, 
including enormous impressive drone light shows presented by 
Intel (24), High Great (25), and CollMot (26). Nevertheless, behind 
large-scale and successful commercial usages, the swarm positioned 
by the Global Navigation Satellite System merely follows prepro-
grammed trajectories and therefore cannot be operated in unfore-
seen places with obstacles. Autonomous outdoor aerial flocking was 
presented in (27–29), where drones adjusted their motions 
according to others’ states in real-time using simple reactive rules 
such as the potential field (PF) method. However, the lack of opti-
mality consideration during the flight resulted in actions that are not 
sufficiently coherent. Such inconsistency further renders far-neighbor 
distance [>10 m on average reported in (29)] required for safety and 
thus unsuitability in cluttered environments. Moreover, although 
they successfully imitate the behaviors of large flocks of birds, accu-
rately operating each individual is difficult because the parameters 
are tightly coupled with specific deployment scenarios and neighbor 
states. To achieve rapid and safe collective motions with dense ob-
stacles, Soria et al. (30) incorporated model predictive control into 
the PF. Nevertheless, higher performance was achieved at the cost 
of heavy computation and a centralized organization that lacked 
the scalability for a large swarm size (30). In addition to navigation 

algorithms, the above solutions (27–30) still depend on global 
localization and a known environment, which prevent their appli-
cations in the wild. In contrast, McGuire et al. (8) mitigated these 
two requirements by proposing a reactive swarm gradient bug algo-
rithm (SGBA) that used optical flow for localization and laser ranging 
sensors for obstacle detection. The SGBA is very lightweight while 
incorporating all the sensing, decision-making, and control into a 
30-g CrazyFlie (31) but that attribute comes at the cost of low effi-
ciency and extensibility and is therefore more suitable for structured 
places and simple tasks (spreading from and returning to home). 
The inaccurate localization and single-point obstacle sensing re-
stricted by the hardware platform further aggravate such limitations. 
A qualitative comparison of (29, 8, 30) is presented in Fig. 1B.  
Accurate self-positioning with a single camera and inertial measure-
ment unit (IMU) on a miniature swarm platform was first released 
by Loianno et al. (32), but only some trajectory planning in sparse 
known environments was demonstrated, and the swarm did not enter 
the wild. Furthermore, purely visual-inertial odometery (VIO)–
based localization in their work may drift in long-range flights. To 
make a swarm more efficient and robust in dense environments, 
our previous work, EGO-Swarm (33, 34), proposed an optimization-
based method. Full-stack navigation solution of aerial swarms de-
ployed in the forest is rare. One limitation of our previous work is 
that the potential for scalability lacks solid validation because we 
used only three drones. Moreover, the planner is unable to adjust 
the time profile, which would occasionally produce less optimal and 
even unsafe trajectories. These imperfections still leave the aerial 
swarm in the cluttered wild as an unsolved problem.

Observing how nature tackles this navigation challenge, two main-
stream approaches have inspired robotics researchers. Insects 
perform short-term reactive actions, whereas birds prefer relatively 
long-term smooth maneuvers (35). This is because birds have a 
sharper sense of sight and movement, higher–degree-of-freedom 
motion systems, and more brain capacity compared with insects 
(35, 36). These two approaches have also inspired two mainstream 
drone navigation methods in the literature: insects for reaction-
based applications and birds for trajectory planning approaches. 
Among the two, the former approach contains extremely lightweight 
and efficient solutions in terms of computation and memory allow-
ing for even lighter drones, whereas the latter shows higher opti-
mality and flexibility. Accordingly, for higher task efficiency and 
extensibility in field environments, we choose the latter approach. 
Here, we address this TEEM contradiction by incorporating spatial-
temporal optimization techniques for trajectory optimality and 
formulating trajectory planning as a multiobjective optimization 
under a goal-chasing framework for extensibility. Furthermore, 
the combination of the above two features renders fast convergence, 
therefore guaranteeing economical computing, which makes a 
miniature platform possible.

Proposed systematic solution
After investigating a variety of applications, we find that the key 
to TEEM is trajectory planning, which not only deforms trajectory 
shapes but also adjusts the time profiles to exhaustively exploit the 
solution space and squeeze the capability of drones. If only spatial 
deformation is performed (33, 37), as compared in the “Benchmark 
comparisons” section, drones tend to circumnavigate to wait for 
others while passing through a narrow passage, which hinders later 
drones and results in inferior and even unsafe trajectories. Therefore, 

Movie 1. A comprehensive presentation of the proposed swarm. This video 
cover is a composite image of the aerial swarm in a bamboo forest.
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simultaneously planning the shape and time profile of a trajectory, 
also called spatial-temporal trajectory planning, is crucial for safe 
and efficient drone flights. Despite this, such joint optimization 
has a historically difficult problem for multicopters, because the 
spatial and temporal parameters determining the trajectory together 
are highly coupled (38, 39), which, for example, results in ~40 min 
to compute a time-optimal trajectory (1). In the proposed approach, 
we achieve real-time spatial-temporal optimization by decoupling 
the spatial and temporal parameters in objective function com-
putation and achieving a linear complexity mapping between the 
optimized variables and intermediate variables that represent a 
trajectory.

Under the trajectory-planning framework, the task-specific re-
quirements of generating a trajectory can always be formulated as 
goals to reach; multiple objectives, such as shorter flight time, higher 
smoothness, and closeness to a given path; and constraints, such as 
collision avoidance and dynamical feasibility. For the first require-
ment, we build our planner under the goal-chasing scheme, which 
receives users’ goals continuously and keeps chasing the latest one. 
For the second and third requirements, the nonconvexity among 
them makes the optimization problem difficult to solve. To achieve 
high compatibility, we adopt the constraint transcription method 
(40) that converts all objectives and constraints to weighted penalties. 
Specifically, penalties derived from constraints are assigned with 
weights orders of magnitude higher than other objectives. Note that 
here, terms “objectives” and “constraints” refer to task requirements, 
while “penalties” are their relative mathematical formulations form-
ing the final cost function. The trajectory-planning problem can 
then be solved quickly by standard solvers leveraging sparse para-
metric optimization and constraint transcription. To simplify the 
situation, we provide detailed examples of adding task-specific ob-
jectives and constraints intuitively with preformulated general-
purpose penalties (GPPs). GPPs consist of time minimization, 
smoothness maximization, collision avoidance, and dynamical 

feasibility, which are defined in Materials and Methods. This trajec-
tory planning framework is illustrated in Fig. 2D.

Except for the proposed trajectory planning, we adopt visual-inertial 
odometry running on each drone independently for aerial swarm 
localization. However, accumulative odometry drift may result in 
drone collisions when they continue to report, maintaining a safe 
distance, so we develop a decentralized drift-correction algorithm 
by minimizing relative distance error measured from onboard ultra-
wideband (UWB) sensors.

As shown in Fig. 2 (A and B), each drone is equipped with full 
perception, localization, planning, and control functionalities and 
loosely coupled by a broadcast network sharing trajectories. Coinci-
dentally but reasonably, the proposed system is similar to birds 
capable of flying freely through the forest while avoiding obstacles 
and other moving creatures. For example, in short-range navigation, 
birds mainly rely on eyes and their vestibular system (41), and we, 
accordingly, develop improved visual-inertial odometry. Further-
more, birds adjust path and speed simultaneously to avoid collision 
while considering flight time and smoothness to save energy (35), 
and we thus propose joint optimization of spatial-temporal trajec-
tories with multiple objectives. Beyond the capability of small birds, 
we further use the advantage of our electrically powered artificial 
system characterized by high-fidelity wireless communication for 
trajectory sharing and high-speed computing for fast planning. 
Furthermore, decentralized coordination concerning both individual 
and swarm intelligence is met naturally by our solution, which im-
proves robustness. As Murphy (42) pointed out, weakly centralized, 
distributed organization of the swarm shows higher robustness and 
resilience and can even retain actions when communication and 
Global Positioning System (GPS) data are lost.

We propose a versatile multirobot navigation solution, allowing 
users to incorporate various task-specific requirements and also pro-
ducing locally spatial-temporal optimal motions in real time. The 
proposed solution is embodied on drones that are only the size of a 

Fig. 1. Overview of the proposed aerial swarm. (A) Static closeup. (B) Comparison with swarm gradient bug algorithm (SGBA) (8), flocking (29), and nonlinear model 
predictive control (NMPC)–Swarm (30). The ticks of each axis from the graph center to the outward are as follows: Optimality: handcrafted rules, optimized rules, spatial 
optimization, and spatial-temporal optimization; size: arm-sized and palm-sized; computing: offboard and onboard; weight: below 100 g, above 100 g, and above 1 kg; 
extensibility: task specific, tasks with specific formulations, and tasks that can be analytically modeled of decision variables.
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palm and is validated by several demonstrations in unstructured 
environments as detailed in Results. We have released the software 
and hardware necessary to accelerate aerial swarm research, which 
developers can deploy and use to validate their algorithm from sim-
ulations and field environments, all based on our platform.

RESULTS
The quality of the proposed planner is assessed in both real flights 
and simulation. In real-world experiments, we present four proof-
of-concept but challenging applications, each of which is modified 
on the basis of our system solution to validate different aspects of 

Fig. 2. Hardware and system architecture specifics. (A) Hardware components of our flight platform. See the “Palm-sized drone hardware” section for more details. 
(B) The system architecture. Visual-Inertial State Estimator (5) and probabilistic occupancy grid (7) are adopted for localization and mapping, respectively. (C) Computation 
and memory usage. Planning and mapping run in the same thread to reduce latency. (D) The planning framework.
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performance and potential. In simulations, quantitative evaluations 
of several common metrics are conducted with various state-of-the-
art aerial swarm planners.

Fly through dense forest
This experiment is designed to demonstrate swarm navigation with 
full autonomy in a highly dense wild, i.e., a bamboo forest, without 
harming themselves or the plants. In this experiment, the penalty 
function only contains GPPs, and the goal is set 65 m forward, outside 
the forest. The paths in Fig. 3I reveal a notable advantage of trajectory 
planning: The planned trajectories always connect one gap to the next 
one directly and smoothly. Compared with reaction-based methods, 

the drones always show an explicit and nonsmooth turn-away pattern 
(8) directly in front of an obstacle or before hitting other drones.

From the photos, available space between two bamboos may be 
less than 30 cm wide, and therefore, only miniature-sized drones 
are allowed to pass. More severely, these narrow gaps further limit 
the solution space, especially for drones that have neighbors on 
both the left- and right-hand sides. The constraints become even 
tighter when only one available gap exists for multiple drones to 
pass through together. To achieve safety and efficiency, some naive 
handcrafted strategies, such as altering altitude to avoid collisions, 
are undesired because of downwash disturbance and energy wasting. 
Under such situations, our spatial-temporal trajectory planner 

Fig. 3. Challenging wild navigation with bamboos and various other obstacles. (A) Ten drones fly through highly dense bamboos. (B) A drone flies through a narrow 
gap. (C and D) Collision avoidance. (E) A trunk. (F) Messy branches. (G) Tilted bamboos. (H) Uneven ground. (I) Trajectories and the combined map recorded from each 
drone. Circled letters with white arrows indicate the places in above panels. Experimental visualization in this paper shares a legend identical to that here.
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implicitly finds solutions in a general problem formulation by 
adjusting time profiles to allow multiple drones to only change 
necessary velocity smoothly and then pass the gap in a queue, which 
produces lower cost from the planner’s perspective compared 
handcrafted rules. A quantitative analysis of this procedure can 
be found in section S4 of the Supplementary Materials.

Except for dense vertically growing bamboos, other kinds of 
obstacles exist, including tilted bamboos, trunks, low bushes, weedy 
ditches, uneven ground, and blown leaves blocking cameras 
(Fig. 3, A to H), which necessitate planning the trajectory in three 
dimensions. Such an unstructured environment composed of 
obstacles with irregular shapes and dense distributions validates the 
capability of navigating in most cluttered places, such as disaster 
scenarios, let alone in the regular artificial world. The video of this 
experiment is Movie 2.

Formation navigation in the wild
This experiment demonstrates the extensibility of the proposed 
unified trajectory planning by adding a formation penalty to GPPs. 
Formation flight is widely used in drone light shows and has been 
demonstrated in cooperative transportation (43, 32), but all these 
demonstrations are presented in empty or manually controlled en-
vironments. The proposed system brings the formation into a pre-
viously unknown wild environment. Here, the formation is defined 
as maintaining a preferred moving shape, which means that drones 
translate with fixed relative positions. Meanwhile, each drone also 
independently navigates against obstacles. The formation penalty is 
a regulation term to desired positions that maintain the formation. 
The obstacle density is reduced in this experiment compared with 
that in the “Fly through dense forest” section to make the formation 
distinguishable, but standing bushes, low-to-high trees, and two 
human-made iron pillars still exist as shown in Movie 3.

Following the planned trajectories, the swarm flies through the 
woods while staying in formation. From the deformation curve and 
velocity profile in Fig. 4 (A and D), we conclude that the swarm 
maintains a formation, although sometimes drones must deviate to 
avoid prior unknown obstacles and then gather speed to catch up to 
the formation. Note that at timestamps 12 and 25 s, the average ve-
locity decreases automatically as drones are avoiding trees and in-
creases when they are wholly back to open space. In this case, the 
velocity altering of some individuals is propagated to the entire for-
mation without explicit preprogramming. This phenomenon shows 
the implicit balance between safety and flight time where the 
slowdown near obstacles reserves more reaction time to potential 
collision and the whenever-possible speedup reduces flight time. 
The video of this experiment is Movie 3.

Intensive reciprocal avoidance evaluation
Unlike other tests, in which drones move along a similar direction 
and the actions of avoiding others are not apparent, the experiment 
shown in Fig. 5 demonstrates random-direction flight in a confined 
space, therefore maximizing the necessity of inter-robot collision 
avoidance. This setting mimics the most underlying requirements 
for dense air traffic among skyscrapers: navigating safely, efficiently, 
and individually. To validate such capability for 10 drones, goals on 
a 3-m-radius circle are assigned randomly to drones that have 
arrived at the previous goals. Only the basic GPPs in trajectory 
planning are adopted. Except for a thick tree trunk and a camera-
mounted tripod in the flight area, to better imitate more real-world 
situations during the flight, we gradually place cuboid and cylindrical 
obstacles to mimic newly built buildings, walk through the area as large 
moving obstacles, and hold and move a drone as natural disturbances. 
Next, we shut down all the ground localization anchors (only used 
in this experiment) to imitate the loss of global positioning.

Because safety and efficiency are two main concerns of transpor-
tation systems, we evaluate the minimum distance to collision and 
the total number of completed deliveries (total reached goals) during 
the 3-min flight. As shown in Fig. 5D, during the entire flight, each 
drone is modeled as a sphere with 7-cm radius. They manage to 
keep safe distances from both obstacles and other drones, despite 
unpredictable events. The number of reached goals increases linearly 
as time increases. Thus, the near-constant transporting rate under 
different obstacle densities is achieved owing to the local optimality 
of the planned trajectories. The video of this experiment is Movie 4.

Multidrone tracking with target occlusion
This experiment demonstrates the potential of adding high data-load 
hardware and running more computationally expensive software 
on the proposed miniature platform with extra user-defined objec-
tives. Swarm tracking can be used in multiview aerial photography 
and videoing, which have been attracting interest recently (44, 45), 
and they can take comprehensive recordings of the participant and 
provide more materials for post-editing. To track and record, drones 
are equipped with extra RGB (red-green-blue) cameras that not only 
capture vivid videos but also act as representative “high data-load” 
hardware and simultaneously run video compression, data storing, 
and object detection to validate the platform’s extensibility in 
computationally expensive tasks. In our experiment, the focus is a 
human participant moving in the woods. To catch up with the 
human while avoiding obstacles and other drones, we design a 
tracking penalty along with GPPs to plan the desired trajectory. 

Movie 2. Flying through dense forest. Movie 3. Formation navigation in the wild. 
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Furthermore, multidrone tracking improves the robustness to oc-
clusion as shown in Fig. 6D because the object position can be ac-
quired by multiple drones through communication. Drones will try to 
receive and fuse as many observations as possible from itself and 
others to improve occlusion resistance. From the results in Fig. 6, the 
human can move forward without worrying about drone collision or 
losing the target. The video of this experiment is Movie 5.

Benchmark comparisons
We compare the proposed approach against two state-of-the-art 
planners, i.e., MADER (37), and our previous work, EGO-Swarm (33). 
Both planners belong to the category of decentralized, asynchronous 
trajectory planning methods for drone swarms. Here, MADER 
shows impressive collision avoidance with both densely placed static 
and dynamic obstacles. Besides, EGO-Swarm validated in the wild 

is a lower-complexity systematic solution. The simulation platform 
is a personal computer with an Intel Core i7 10700K CPU (central 
processing unit) running at 4.8 GHz and with 24-GB RAM (random 
access memory) at 3200 MHz, on which drones run in independent 
threads in parallel to maintain consistency with the real-world, 
decentralized system architecture.

Figure 7A gives the visualization of planned trajectories in 
two challenging scenarios, i.e., flying through a narrow gate and an 
obstacle-rich area at a velocity of 2 m/s. The negative effect of lacking 
temporal trajectory optimization reveals that both MADER and EGO-
Swarm generate detours for later drones to wait for their priors. The 
proposed planner shows the most smoothest trajectories because 
drones can adjust time profiles to achieve spatial collision avoidance.

We assess the trajectory-planning performance considering four 
different metrics under various desired velocities and average 

Fig. 4. Swarm navigation in formation with prior-unknown obstacles. (A) Deformation is defined as the deviation between current drone position and the assigned 
position that forms the desired formation. (B) Maps, trajectories, and drones recorded during the flight. (C) Snapshots of adaptive deformation and reformation to pass 
through the given area. (D) The velocity profile. In (A) and (D), solid curves are average value of all drones, while the top and bottom bounds of the transparent parts in-
dicate its maximum and minimum values. Note that (A) to (D) are aligned in this position to provide clearer evaluation. (E) A photograph of the formation of real drones, 
which are about 1 m apart.
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obstacle spacings in Fig. 7B. Specifically, three approaches are 
compared with desired velocities varying from 1 to 3 m/s and aver-
age obstacle spacings ranging from 2 to 1 m. Among these four met-
rics, minimum clearance is the minimum value among all drones 
during their entire flights. The others are the average values for 
10 runs under each different parameter setting. The maps remain 
identical for three planners but are randomly regenerated among 
10 runs.

In Fig. 7, our trajectories show fewer jerks at comparable flight 
times while guaranteeing safety, owing to the spatial-temporal tra-
jectory planning capability. Because MADER uses the MINVO (46) 
basis to parameterize the trajectory and EGO-Swarm uses B-Splines 
(47), the temporal optimizations all suffer from high complexity 
and are therefore intractable under real-time requirements. Thus, 
the solution space is not fully exploited, which results in inferior 
trajectory quality. Furthermore, the proposed method achieves 
shorter a computing time because our planner has fewer decision 
variables as described in the “Trajectory representation” section. In 
particular, MADER optimizes both the trajectories and separating 

Fig. 5. Evaluation of intensive reciprocal collision avoidance with unexpected events. (A) Overview of flying to randomly given goals and adding obstacles during 
the flight. (B) Top pictures show drones avoiding other drones and obstacles. Bottom pictures show a sequence of snapshots recording inter-robot collision avoidance. 
(C) Photos from left to right show a researcher adding obstacles, interfering with a drone, and shutting down global localization anchors during an entire flight. (D) Minimum 
relative distance of each drone to others. Solid line records the lower bound of the minimum that is the closest distance among all agents. Collision distance equals the 
drone diameters. Safety is guaranteed during the entire flight. (E) The trajectories during the 3-min flight. (F) Number of goals reached. Blue bars indicate the time slots 
when new obstacles are added; the red bar means that global localization anchors are shutdown. Note that (A) and (B) to (F) belong to two different flights.

Movie 4. Intensive reciprocal avoidance evaluation. 
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planes from others and obstacles, which further introduces extra 
decision variables. We conducted more tests with an extra pair of 
centralized swarm trajectory planners, SCP (sequential convex pro-
gramming) (48) and RBP (relative Bernstein polynomial) (49), both 
of which require global maps and sufficient time for offline compu-
tation, as given in the Supplementary Materials.

Swarm playground
To encourage more involvement and further development, all the codes 
are included in the Supplementary Materials to inspire user-friendly 
running and interaction, which is named the swarm playground. In 
this playground, users can watch a swarm of 40 drones fly freely to 
given goals (Fig. 8A), watch seven drones form a centered hexagon 
(Fig. 8B), or watch drones swap positions under either predefined 

Fig. 6. Multidrone tracking with target occlusion. (A) Tracking using four drones equipped with RGB cameras running computationally expensive tasks including video 
compressing and neural networks. (B) Trajectories of four drones. Rhombus with black edges are drone positions at four timestamps. (C) Heatmaps of target distributions 
in camera views. Yellow regions indicate more frequent target appearance. (D) A time sequence demonstrates system resistance to target occlusion.

Movie 5. Multi-drone tracking with target occlusion. 
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(Fig. 8C) or endless random goals (Fig. 8D) on a circle. Goals can be 
given by users as well in a select-and-set way, as in the video game 
Command & Conquer: Red Alert 2 (2000). Furthermore, users can 
more deeply take part in the planning process by acting as a tracked 
object (Fig. 8E) or dynamic obstacles that drones must avoid (Fig. 8F), 
using one or multiple Microsoft Xbox Controllers (50). All the static 
obstacles in the playground are randomly generated. The system 
parameters—including drone numbers, flight velocity, start, and goal 
positions—can be reconfigured following the tutorials. In addition, 
if new objectives are added, users are encouraged to evaluate the 
correctness of problem formulation and parameter settings before 
real-world deployment. The code can be effortlessly deployed on 
Ubuntu 16.04, 18.04, and 20.04 with the Robot Operating System 

being the only dependency installed. The video of the swarm play-
ground is Movie 6.

DISCUSSION
In this work, a modular and hierarchical system achieving swarm 
intelligence based on high-level individual intelligence is pro-
posed and validated, in which all drones are developed with the 
capability of sensing the environment and planning a locally 
optimal trajectory. This framework is adopted because we focus 
on fully autonomous navigation in real-world unstructured fields 
without prior knowledge while satisfying TEEM (as discussed in 
Introduction).

Fig. 7. Benchmark comparisons. (A) Trajectory shape visualization. Top: Six drones fly through a narrow gate. Bottom: Ten drones fly across obstacles. All the drones 
start together at identical desired velocity, and the order of start and goal positions are reversed to enforce reciprocal collision avoidance. The edge length of the grid on 
the ground is 1 m. (B) Metrics comparisons visualized using violin plots and bar graphs. The computing time is the time used for planning. The minimum clearance records 
the minimum distance to other drones or obstacles subtracted from the 0.2-m drone radius, where a negative value indicates a crash. The control effort (which evaluates 
smoothness) Sm ≔ ∫ j(t)2dt measures the time integral of squared jerk j during the entire flight, because jerk is directly related to the body turn rate and large jerk makes 
the drone flight shaky. The flight time measures the time spent to reach the given goals. Bar graphs with or without SD are used. Violin plots record the medium and 
quartile, along with distribution of the data. The specific values can be found in tables S8 to S13. Plots and graphs can be recreated using the released dataset (66).
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From the simulation benchmarks to real-world experiments, we 
successfully demonstrate TEEM in both software and hardware. The 
presented underlying capability of navigation is compatible with 
further incorporating elaborate mission-specific requirements. For 
example, in formation flight, there can be no prior-defined shape, 
and thus, drones must only stay close to each other, making them 
behave like bird flocks. Moreover, the preferred shape can adaptively 
change according to task requirements. The trajectory planner is 
capable of avoiding multiple dynamic obstacles, as shown in Fig. 8F, 
although the obstacles’ future paths are not precisely known because 
they are controlled by users in real time.

Here, we de-emphasize rigorous completeness and optimality 
proofs to achieve real-world performance because the entire system 
composed of complex real-world interaction modules has already 
shown to be difficult to rigorously mathematize. Fortunately, some 
issues such as the deadlock (inaction due to a stalemate situation owing 
to resource allocation challenges) in multiagent literature (51, 52), 
which focus more on completeness and optimality, are naturally miti-
gated by our method, owing to real-world randomness, asynchronously 

Fig. 8. Pictures generated in the software package of swarm playground. (A) A swarm flight of 40 drones. (B) Formation flight. (C) A circle position swap. (D) Endless 
random goals selected on a circle. (E) Swarm tracking with the target manually controlled. (F) Avoiding multiple dynamic obstacles that are manually controlled. (G) Legend. 
(H) Gamepads used to control the tracking target and dynamic obstacles.

Movie 6. Swarm playground. 
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triggered planning, and a high degree of freedom in our trajectory 
representation. Similarly, deadlock is also reported to hardly oc-
cur in other trajectory planning methods (53) in normal situations, 
unless under conditions with special environment geometry, such as 
being inside a narrow and long tube.

In summary, our proposed planner follows a goal-chasing scheme 
in which users can give goals at any time during the tasks. Such a 
scheme can seamlessly connect to high-level decision-making and 
task assignment modules with outputs that are always preferred 
goals for each robot (54, 55). Furthermore, the proposed multi-
objective trajectory planner allows high-level modules to focus on 
task abstraction without having to worry about common require-
ments such as safety and dynamical feasibility.

MATERIALS AND METHODS
System architecture
Following the single-to-swarm approach, a decentralized scheme is 
naturally constructed, in which each drone is equipped with full 
autonomy for maximal navigation quality. The system architecture 
is depicted in Fig. 2B. The trajectory-broadcasting network is the 
only connection between individuals. Therefore, the system is less 
coupled than in previous work (33), which requires a stable chain 
connection. The mapping module is based on probabilistic mapping 
(7) that shows robustness and efficiency. The drone removal module 
removes pixels of other witnessed drones in depth from interfering 
with mapping. A VIO-based localization module along with the 
proposed drift-correction algorithm computes the six–degree-of-
freedom drone states. The controller module commands the drone 
to precisely track planned trajectories. The planning module that 
generates high-quality trajectories is the core of achieving TEEM 
and therefore is further detailed in the “Trajectory representation” 
to the “Dynamic obstacle avoidance” sections and in the Supple-
mentary Materials. Hardware modules are introduced in the “Palm-
sized drone hardware” section. The drone removal module, which 
takes other drones’ trajectories to determine three-dimensional 
bounding boxes as trust regions, is detailed in section S8 of the Sup-
plementary Materials.

Trajectory representation
Here, spatial-temporal trajectory planning is achieved using a newly 
developed trajectory representation named MINCO (minimum 
control) (56) that is designed for differentially flat systems like mul-
ticopters (4). The most advanced aspect of MINCO is that it decouples 
the space and time parameters of a trajectory for users, on which 
linear-complexity operations are designed for convenient spatial-
temporal deformation. The parameters of a MINCO piece-wise 
trajectory are the (i) time durations T ∈ ℝM of each piece and (ii) the 
adjacent waypoints q ∈ ℝ3 × M − 1 between each pair of connected 
pieces, where M is the piece number. Then, a three-dimensional 
point p(t) ∈ ℝ3 at time t on the MINCO trajectory is defined by an 
operation M

	​ p(t ) = ​M​ q,T​​(t)​	 (1)

According to the “Optimality conditions” section in (56), for an 
s-integrator chain dynamics (s = 3 in this work), MINCO trajectory 
is by default a 2s − 1 degree ​​C​​ s−1​​ polynomial spline with constant 

boundaries and minimum control effort given {q, T}. Its control 
effort optimization is given by

	​​ min​ 
p(t)

​ ​ ​∫​t​ 0​​​ 
​t​ M​​

 ​​ ​‖​p​​ (s)​(t ) ‖​2​ 
2
​ dt​	 (2)

where t ∈ [t0, tM] is the domain of the current trajectory. Note that 
smoothness maximization is done through control effort minimiza-
tion because we use a jerk-control system model.

Furthermore, MINCO is advanced in converting the given pa-
rameters {q, T} to polynomial coefficients c and time profile Tp with 
a linear complexity O(M). A more specific correspondence can be 
expressed as

	​ M(T ) c  =  b(q ) , ​T​ p​​  =  T​	 (3)

where b(q) ∈ ℝ2Ms × 3 and M(T) ∈ ℝ2Ms × 2Ms is a nonsingular banded 
matrix for any T ≻ 0 as shown in (56). Recovering a trajectory en-
joys linear complexity via banded PLU factorization. The gradi-
ents for the polynomial coefficients is also propagated to MINCO 
parameters in linear time. This means that once partial gradients of 
objectives on {c, Tp} are acquired, they can be efficiently propagated 
onto {q, T}, and then optimization can be directly applied to 
MINCO. Details of M, b and more characteristics of MINCO are 
given in the Supplementary Materials. Specifically, computing time 
from given {q, T} to {c, Tp} by Eq. 3 is approximately 1 s per poly-
nomial piece on a desktop computer.

Constraints transcription
The differential flatness of multicopters (4) implies that their mo-
tion planning can be performed on low-dimensional smooth trajec-
tories, such as MINCO. To achieve smooth motions and efficient 
flights, we define two metrics for smoothness and time, respectively, 
and then minimize their weighted sum. Decision variables are the 
MINCO parameters q and T. Start and terminal states are fixed to 
ensure continuity. The feasibility requires trajectories to fulfill 
vehicle’s dynamical constraints and to avoid obstacles. The flatness 
makes it possible to enforce dynamical constraints by restricting 
magnitudes of trajectory velocity, acceleration, and jerk. Obstacle 
avoidance is achieved by deforming the trajectory shape.

Continuous-time constraints along the trajectory consist of 
infinitely many inequalities. To handle the difficulty, we propose a 
two-step procedure for constraint transcription. First, inspired by 
(40), constraints are enforced via integrals of penalty functions with 
large enough penalty weights. Second, every integral is evaluated by 
a finite sum of equally spaced samples along the timeline. The prob-
lem finally becomes an unconstrained one that can be solved more 
efficiently (57). For an optimization of time-dependent objectives J 
under equality constraints H and inequality constraints ​G​ within 
time t ∈ [t0, tM], tM − t0 = sum(T), this two-step conversion can be 
written as

	​​ min​ 
q,T

​ ​ ​ ∫​t​ 0​​​ 
​t​ M​​

 ​​J(q, T, t ) dt​	 (4)

	​ s . t . H(q, T, t ) = 0, G(q, T, t ) ≤  0​	 (5)

	​​​ ⇓​​​​	
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	​​​ min​ 
q,T

​ ​​ (​​​∫​t​ 0​​​ 
​t​ M​​

 ​​Jdt + ​∫​t​ 0​​​ 
​t​ M​​

 ​​ ​‖​​ H​​ ⋅ H‖​2​ 2​ + max ​(​​ G​​ ⋅ G, 0)​​ 3​ dt​)​​​​	 (6)

	​​​ ⇓​​​​	

	​​ min​ 
q,T

​ ​ ​  ∑ 
i=0

​ 

 ​​ ​​ i​​ ⋅ (J(​t​ i​​ ) + ​‖​​ H​​ ⋅ H(​t​ i​​ ) ‖​2​ 2​ + max ​(​​ G​​ ⋅ G(​t​ i​​ ) , 0)​​ 3​)​	 (7)

We omit arguments q, T, and t in Eqs. 6 and 7 for simplicity. 
In these equations, H and G are user-defined weights with appro-
priately large entries. ti = t0 + (tM − t0)i/ indicates a finite number 
of sampled timestamps, where  + 1 equals the sample number, and 
i is the interval value for integral evaluation. If any integral in J 
has a closed-form expression, like smoothness and total time, 
analytical results should be used. The Eq. 7 can be written in a 
user-friendly form

	​​ min​ 
q,T

​ ​ ​ ∑ 
x
​ ​​ ​​ x​​ ​J​ x​​​	 (8)

where Jx are various terms of penalties, i.e., task specifications, and 
x are relative weights. Subscripts x = {s, t, d, o, w} denote smooth-
ness (s), total time (t), dynamical feasibility (d), obstacle avoidance 
(o), swarm collision avoidance (w), etc.

Solving Eq. 7 suffers from high complexity if a raw piece-wise 
polynomial trajectory is used because dense matrix inversion is in-
evitable. In contrast, linear-complexity operations of MINCO in the 
“Trajectory representation” section greatly reduce the computation 
overhead within each iteration. Along with the compact parameter 
representation, the total convergence speed is accelerated by orders 
of magnitude. In another aspect, because the constraints are con-
verted into objectives, the feasibility is guaranteed by postchecking 
as described in the “Hierarchical safety guarantee” section.

Trajectory planning procedure
The proposed trajectory planner runs as follows. Step 1. A user or 
software gives a global goal position. Step 2. The planner selects a 
local target within the predefined local planning distance along the 
direction to the goal and then starts the iteration with an initial 
guess. Step 3. Within each iteration, the solver returns a solution 
trajectory of the warm-start optimization. Step 4. The total penalty 
J and the gradients are calculated and then sent back to the solver 
before returning to step 3. Step 5. A local trajectory from the current 
position to the local target satisfying task requirements is returned 
and executed. Step 6. After a given period (always either one or 
several seconds) or whenever the trajectory has collided with newly 
sensed obstacles, the planning is reactivated by returning to step 2. 
This procedure is repeated until the drone reaches the goal. In this 
work, we use an open-source L-BFGS solver (58), which belongs to 
the category of quasi-Newton methods of optimization for the next 
candidate trajectory at the next iteration.

General purpose penalties
Maximizing smoothness
According to Eq. 2, the smoothness penalty Js is defined as the integral 
of the squared s-order derivatives, which gives

	​​ J​ s​​  = ​ ∫​t​ 0​​​ 
​t​ M​​

 ​​ ​‖​p​​ (s)​(t ) ‖​2​ 
2
​ dt​	 (9)

This integral can be analytically calculated because the MINCO 
trajectory can be represented as piece-wise polynomials according 
to Eq. 3.
Minimizing total time
A shorter flight time is desirable (1) in most cases, so we also minimize 
the weighted total flight time, which gives the total time penalty Jt as

	​​ J​ t​​  =  sum(T)​	 (10)

Dynamical feasibility
For differentially flat multicopters, dynamical feasibility is guaranteed 
by restricting magnitudes of the trajectory derivatives. In our work, 
we limit the amplitude of velocity, acceleration, and jerk by adding 
a penalty if these derivatives exceed the physical thresholds, which are

	​​ J​ d,v​​  = ​  ∑ 
i=0

​ 

 ​​max ​{(​p ̇ ​(​t​i​ 

2​ ) − ​v​m​ 2 ​ ) , 0}​​ 
3
​​	 (11)

	​​ J​ d,a​​  = ​  ∑ 
i=0

​ 

 ​​max ​{(​p ¨ ​(​t​i​ 

2​ ) − ​a​m​ 2 ​ ) , 0}​​ 
3
​​	 (12)

	​​ J​ d,j​​  = ​  ∑ 
i=0

​ 

 ​​max ​{(​p ⃛ ​ ​(​t​ i​​)​​ 2​ − ​j​m​ 2 ​ ) , 0}​​ 

3
​​	 (13)

	​​ J​ d​​  = ​ J​ d,v​​ + ​J​ d,a​​ + ​J​ d,j​​​	 (14)

where vm, am, and jm are the maximum allowed magnitudes of 
velocity, acceleration, and jerk, respectively; ti here and in later sec-
tions follows the same definition in Eq. 7. We directly sum Jd,v, Jd,a, 
and Jd,j because they share similar magnitudes although with dif-
ferent units.
Obstacle avoidance
Obstacle avoidance is performed on the unordered obstacle map 
built from the cluttered real world. In our work, we model obstacles 
as planes (x − s)Tv = 0, x ∈ ℝ3, for which we treat the obstacle side 
of the plane as occupied and the other side as free (14). Here, s ∈ ℝ3 
is a point on the plane, and v ∈ ℝ3 is a normal vector pointing to the 
free side. Then, for any point p ∈ ℝ3, its distance do to obstacles is 
defined as

	​​ d​ o​​  = ​ (p − s)​​ T​ v​	 (15)

This is a highly simplified obstacle representation, but it shows 
an appropriate balance between fidelity and computation overhead 
in our previous work for single drone navigation (14). A detailed 
description of {s, v} generation can be found in the Supplementary 
Materials. Specifically, generating a plane typically takes 0.1 ms on a 
desktop computer and thus is sufficient to be executed onboard. 
Following the definition of d0, we penalize if ​​d​ 0​​  < ​ C​ o​​​ with ​​C​ o​​  >  0​ 
an obstacle clearance. Then, the obstacle avoidance penalty Jo is for-
mulated as

	​​ J​ o​​  = ​  ∑ 
i=0

​ 

 ​​max ​{(​C​ o​​ − ​d​ o​​(p(​t​ i​​ ))) , 0}​​ 3​​	 (16)

where do is a function of p(t), and therefore Jo is a function of the 
MINCO trajectory.
From single to swarm
Swarm flight further requires that no collision occurs between indi-
viduals. In real-world usage, we assume bandwidth-limited wireless 
communication to be available for robots. Therefore, compact 
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parameters of MINCO are broadcasted in wireless networks. By 
knowing neighbors’ trajectories, a planner can accurately evaluate 
the swarm distribution and relative velocities at any timestamp in 
the short term, typically several seconds. This duration is sufficient 
for safety because a drone always replans a new trajectory before 
the end of a current one. Reciprocal avoidance is also formulated as 
a penalty Jw that produces a high cost when two drones are too 
close. Therefore, for the uth drone in a swarm containing U drones, 
Jw is defined as

	​​ J​ w​​  = ​   ∑ 
k=1,k≠u

​ 
U

  ​​​ ∑ 
i=0

​ 

 ​​ ​​​k​ J​​​​ w​​(​t​ i​​)​	 (17)

	​​  ​​ k​ ​J​ w​​(​t​ i​​ ) = max ​{​C​w​ 2 ​ ​−​​ k​ ​d​ w​​ ​(​t​ i​​)​​ 2​, 0}​​ 
3
​​	 (18)

	​​  ​​ k​ ​d​ w​​(​t​ i​​ ) ​=​​ k​ ​d​ w​​(​​​​ u​ p(​t​ i​​ ) ​,​​ k​ p( )) = ‖​E​​ 1/2​(​​​​ u​ p(​t​ i​​ ) ​−​​ k​ p( ))‖​	 (19)

where up(ti) and kp() are the trajectories of the uth and kth drones, 
respectively. An offset between ti and  aligns them to the same global 
time. ​​C​ w​​​, named swarm clearance, is the minimum safety clearance 
between two drones. The matrix E ≔ diag (1,1,1/c) with c > 1 trans-
forms a Euclidean distance into an ellipsoidal distance with the minor 
axes at the z axis to relieve the downwash risk from rotors. Next, 
the optimization problem remains unconstrained and hence can be 
solved efficiently.
Formation expectation
The formation is defined as fixed vertexes in a local frame F, which 
moves and rotates with respect to the world frame. To stay in for-
mation, each drone assigned with a vertex plans its trajectories ac-
cording to others’ movements calculated from others’ trajectories. 
When the flight starts after receiving a long-term goal, the forma-
tion is required to move strictly along the straight line l, connecting 
the current position and the goal. The x axis of F is parallel to l. 
Then, the frame origin is determined by fitting the formation shape 
with the current swarm distribution. This formation inference can 
retrieve the formation position in the near future, which gives a 
guiding path g(t) to each drone for the trajectory planning. Then, 
the formation penalty Jf is defined as

	​​ J​ f​​  = ​  ∑ 
i=0

​ 

 ​​ ​‖p(​t​ i​​ ) − g(​t​ i​​ ) ‖​2​ 2​​	 (20)

To enforce continuity, we assume a uniform motion beyond the 
domain of trajectory definition.
Multiview tracking and videoing
To record a participant while avoiding obstacles, an RGB camera 
must point at the participant and the depth camera in the direction 
that the drone flies. To avoid obstacles, we align the depth camera 
with drone velocity. Therefore, the constraints to adjust the view of 
depth camera are defined as (i) aligning the trajectory velocity ​​p ̇ ​(t)​ 
with the predicted participant velocity vp, which gives

	​​  ​​ v​ ​J​ v​​(t ) = ​‖​p ̇ ​(t ) − ​v​ p​​‖​2​ 2​​	 (21)

To keep the participant in the picture with appropriate size, we 
(ii) enforce a preferred drone’s position ​​  ​​ S​ ​P​ prf​​​ in the paricipant 
frame ​S​, which gives

	​​  ​​ p​ ​J​ v​​(t ) = ​‖p(t ) − ​​T​ S​​​​ S​ ​P​ prf ​​‖​2​ 
2
​​	 (22)

where ​​T​ S​​​ is a transformation matrix that transforms ​​ ​​ S​ ​P​ prf​​​ into the 
world frame. Combining the above parts directly gives the multiview 
tracking penalty

	​​ J​ v​​  = ​ ∑ 
​t​ i​​
​ ​​(​​​v​ J​​​​ v​​(​t​ i​​ ) + ​​​p​ J​​​​ v​​(​t​ i​​ ))​	 (23)

where vJv and pJv are directly added for the same reason as in Eq. 10. 
In our experiment, we use a constant velocity model to predict the 
participant’s movement.

The video from an RGB camera connected via CSI (camera serial 
interface) is compressed using the JPEG (joint photographic experts 
group) standard (59) implemented by OpenCV (60) and stored in a 
stream. The object detection relies on YOLOv5 (61) neural network 
with model depth multiple set to 0.33 and layer channel multiple set 
to 0.50, in addition to other default parameters. It is accelerated 
using NVIDIA TensorRT (62). All of the aforementioned software 
demands substantial computing resource and high-bandwidth 
input-output. The z axis on the camera frame of the object is esti-
mated using a prior known object height, and its global position is 
further filtered through a Kalman filter (63).
Dynamic obstacle avoidance
Dynamic obstacles with predicted trajectories are treated in the same 
way as other moving drones from the perspective of decentralized 
trajectory planning. Therefore, avoiding dynamic obstacles still fol-
lows the formulation presented in the “From single to swarm” 
section, except for different E and ​​C​ w​​​ values according to obstacle 
shape and volume. In the “Swarm playground” section, a standard 
bicycle model is used to simulate and predict the movements of 
dynamic obstacles.
Localization and drift correction
Regarding real-world implementations in which high accuracy and 
robustness are always desirable, we use VIO to accurately obtain 
precise and high-frequency state estimations. However, without 
external positioning facilities, accumulative drift is unavoidable, 
which may cause inter-robot collisions during a long-range com-
pact flight. To estimate and correct localization drift separately, we 
leverage relative distance measurements to each other along with 
their positions calculated from received trajectories. The relative 
distances are measured by onboard UWB sensors as also adopted in 
(64). For the uth drone in a swarm containing U drones, its range to 
the kth drone at position pk is measured as ru, k, and then we mini-
mize the total distance measurement error

	​​ min​ ​p​ u​​​ ​ (​‖  ​p​ u​​ − ​p​ u0​​‖​2​ 2​ + ​  ∑ 
k=1,k≠u

​ 
U

  ​​ ​(​‖​p​ u​​ − ​p​ k​​‖​2​ 2​ − ​r​u,k​ 2 ​ )​​ 
2
​)​	 (24)

to acquire the uth drone’s position pu, where pu0 is the latest odom-
etry corrected by the last drift estimation. Note that a regularization 
term for pu0 is added to avoid a nonunique or unstable solution, e.g., 
a whole spherical surface satisfies the minimization when U = 2. 
The problem is solved using numerical optimization, and pu0 is also 
taken as the initial value. To further smooth the odometry while 
improving accuracy, we estimate the slow-changing drift and apply 
a low-pass filter to it, instead of directly using the optimized pu. The 
drift is then added to the latest odometry from VIO to produce 
corrected localization.
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Furthermore, stationed facilities with ground-truth positions can 
also be incorporated into the optimization to ensure global consist
ency as in the “Intensive reciprocal avoidance evaluation” section. 
Note that global frames are required to be roughly consistent initially; 
otherwise, the nonlinear optimization lacks reliable initialization. 
Beyond improved localization accuracy, this approach brings almost 
no extra communication burden because other drone positions are 
calculated from trajectories, and UWB shares different radio fre-
quencies with trajectory broadcasting networks. In our systematic 
solution, we use VINS (visual-inertial navigation system) (5) as the 
VIO and the Ceres Solver (65) for optimization. Evaluations of 
effectiveness from our real-world experiments and a corresponding 
block diagram are presented in the Supplementary Materials.
Hierarchical safety guarantee
Because the safety constraints are transferred to penalties, the out-
put trajectory from the solver can still be infeasible, so a postcheck 
after trajectory planning is required. If a safety constraint is violated, 
the planner increases its weight and then makes another trial to 
improve the possibility of finding a satisfactory solution. If it is still 
infeasible after several trials, the current planning is terminated, 
and the planner waits for 10 ms before activating the next replan-
ning. However, the postcheck after each planning only guarantees 
feasibility at that time point because the map is changing, so a safety 
checking process continuously checks collisions in the background. 
Once unsafety is detected, this process activates a replanning imme-
diately. If this trial fails, and the predicted time to collide is under a 
threshold, an emergency stop trajectory is generated. After halting, 
the planning tries to start up again. Such a fallback guarantees safety 
in the most severe case and recovers the mission afterward.
Palm-sized drone hardware
All the experiments are performed on a 114-mm wheelbase micro-
platform that we designed, assembled, and released (66) with the 
hardware list here. The total weight of the platform is less than 300 g, 
including a 100-g battery providing an 11-min flight time. The drone 
is made up of the following five subsystems, as shown in Fig. 2A.

1) Power and movement suite. Two LiPo batteries of 3000-mAh 
capacity and 7.4-V voltage are connected in series, and four 6000-kv 
brushless motors (model 1404) with 3-inch, three-blade propellers 
are used, which give a thrust-to-weight ratio of 2.4. A four-in-one 
electronic speed controller with a 15-A maximum current is used. 
The propellers are mounted at the bottom of the airframe, and 
therefore, a strong downwash flow will not blow directly onto the 
body. Such a design improves flight time according to our experi-
ments, and the average power consumption used in hovering is 
around 120 W.

2) Low-level control unit. A nanoscale flight control unit (FCU) 
of size 16 mm by 32 mm by 8 mm running PX4 Autopilot (67) is 
built. The hardware following the PX4 standard is composed of a 
STM32 H7 MCU (68) and a BMI088 IMU (69) with an 8-GB mem-
ory card for logging. Here, we omit all the sensors except for the 
IMU because we run localization using VIO rather than relying on 
barometers, magnetometers, or GPS. This unit is responsible for 
low-level angle control and sending IMU data to the high-level 
navigation unit.

3) High-level navigation unit. This unit runs all the localization, 
planning, high-level control, and other task-specific codes and 
therefore requires sufficient computing performance. In our platform, 
we use an NVIDIA Xavier NX (70), a powerful computer for em-
bedded and edge systems with a six-core CPU, 384-core GPU, and 

8 GB of RAM. In our experiments, except for multiview videoing, 
CPU and GPU usages are all below 40%, which allows for consider-
able computing reserves for extra potential usage.

4) Sensors. We address the basic sensor settings to miniaturize 
the drone size while retaining high accuracy. We use a grayscale and 
depth camera Intel Realsense D430 (71, 72) and an IMU from the 
FCU. The D430 camera outputs depth images for mapping and stereo 
grayscale images for localization. The UWB module is a Nooploop 
LTPS (73) with a DW1000 radio chip (74) inside.

5) Wireless communication modules. We test and implement 
two topological structures: (i) a star shape using a single-access-point 
TP-LINK TL-XVR6000L router with an EDIMAX EW-7822UCL 
(75) USB WiFi adapter and (ii) a decentralized peer-to-peer ad hoc 
network using an AzureWave AW-CB375NF (76) via PCIe (peripheral 
component interface express) interface. The first structure shows 
higher bandwidth, whereas the second is more suitable for a large 
swarm scale as assessed in the Supplementary Materials.
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