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Alternating Minimization Based Trajectory
Generation for Quadrotor Aggressive Flight

Zhepei Wang , Xin Zhou , Chao Xu , Jian Chu , and Fei Gao

Abstract—With much research has been conducted into trajec-
tory planning for quadrotors, planning with spatial and temporal
optimal trajectories in real-time is still challenging. In this letter,
we propose a framework for large-scale waypoint-based polyno-
mial trajectory generation, with highlights on its superior compu-
tational efficiency and simultaneous spatial-temporal optimality.
Exploiting the implicitly decoupled structure of the problem, we
conduct alternating minimization between boundary conditions
and time durations of trajectory pieces. Algebraic convenience of
both sub-problems is leveraged to escape poor local minima and
achieve the lowest time consumption. Theoretical analysis for the
global/local convergence rate of our method is provided. Moreover,
based on polynomial theory, an extremely fast feasibility checker is
designed for various kinds of constraints. By incorporating it into
our alternating structure, a constrained minimization algorithm
is constructed to optimize trajectories on the premise of feasibil-
ity. Benchmark evaluation shows that our algorithm outperforms
state-of-the-art waypoint-based methods regarding efficiency, op-
timality, and scalability. The algorithm can be incorporated in
a high-level waypoint planner, which can rapidly search over a
three-dimensional space for aggressive autonomous flights. The
capability of our algorithm is experimentally demonstrated by
quadrotor fast flights in a limited space with dense obstacles. We
release our implementation as an open-source ros-package.1

Index Terms—Motion and path planning, autonomous vehicle
navigation, aerial systems: applications.

I. INTRODUCTION

R ECENTLY, our community has witnessed the develop-
ment of planning methods for quadrotors. Spline-based

methods, which decompose the spatial and temporal parameters
of a planning problem and focus on its spatial part, are widely
applied for real-time applications [1]–[3].

Although spline-based methods can efficiently and accurately
generate energy-optimal solutions for online usage, they usu-
ally omit temporal planning for simplicity. A typical spatial-
temporal joint planning problem has high nonlinearity and
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Fig. 1. Composite image of the quadrotor aggressive flight in a limited space.
Our quadrotor is equipped with a stereo camera, an IMU and an onboard
computer. No external positioning system is used. A video of the experiment
can be viewed at https://youtu.be/H89ALyWA2NI.

nonconvexity coming from its objective and constraints. Since
temporal planning has underlying coupling with spatial param-
eters and implicit gradients, the spatial-temporal joint optimiza-
tion cannot be solved by general nonlinear programming (NLP)
in real-time. Even though existing methods can provide online
motion planning without temporal planning, they are often too
conservative to be used for autonomous flights with high ag-
gressiveness. To bridge this gap, we propose a framework to
split the spatial and temporal aspects of a trajectory optimization
problem, then solve them alternately. With our method, we can
obtain the energy-time joint optimal trajectory in milliseconds.

The proposed method is based on the naturally alternating
structure of the spatial-temporal trajectory optimization and de-
signed to have guaranteed optimality and efficiency. Our method
is motivated by the fact that a polynomial trajectory with an odd
order can be uniquely determined by its endpoint derivatives,
i.e., the boundary condition, and the time duration. For a piece-
wise polynomial, once all boundary conditions are fixed, each
piece of the trajectory depends only on its time duration, which
can be optimized separately. By utilizing the widely-adopted
linear-quadratic objective [4] of the optimization, the optimal
time durations can be updated efficiently. Moreover, inspired
by [2], the closed-form solution is adopted to update deriva-
tives on waypoints. Based on the above observations, the joint
optimization can be efficiently processed by an alternating min-
imization (AM) procedure [5]. With our method, a large-scale
joint optimization can be done in a few milliseconds to generate
optimal trajectory with the best time allocation.

To the best of our knowledge, our method is the first one that
generates trajectories for a quadrotor with the spatial-temporal
optimality, in such a limited time. Summarizing our contribu-
tions in this work:
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� An unconstrained alternating minimization algorithm is
proposed to generate spatial-temporal optimal trajectories
efficiently, with proven global/local rates of convergence.

� A computationally efficient feasibility check method is
designed for a wide range of constraints.

� A constrained alternating minimization algorithm is con-
structed to optimize feasible trajectories in a recursive
fashion, with global convergence verified.

� The proposed method is integrated into an autonomous
quadrotor system then evaluated by real-world experiments
as well as extensive benchmarks. The source code is re-
leased for the reference of the community.

In what follows, we discuss related literature in Sec. II.
Preliminaries of this letter are given in Sec. III. The proposed
spatial-temporal trajectory generation method for unconstrained
and constrained planning cases are detailed in Sec. IV and V,
respectively. Experiments and benchmarks are given in Sec. VI.
The letter is concluded in Sec. VII.

II. RELATED WORK

For quadrotor planning, polynomial splines have long been
used for trajectory parameterization since [1], because of their
flexibility and analytical convenience. In [1], the minimization
of squared derivatives is used as the objective of quadratic pro-
gramming (QP), which can be solved efficiently and accurately.
In [2], a closed-form solution of above QP program is proposed.
Based on this formulation, intensive works have been recently
proposed. In [6]–[8], dynamically feasible trajectories are online
generated within a safe flight corridor, which excludes all obsta-
cles in complex environments. However, in these methods, the
time allocation of the trajectory is pre-defined or heuristically
adjusted. Although heuristics are cheap to compute, the trajecto-
ries generated are often far less optimal and over-conservative,
making them incapable of high-speed flights.

To address the time allocation problem, Mellinger et al. [1]
compute the projected gradient with respect to durations on a
hyperplane where the sum is fixed. They optimize time alloca-
tion through backtracking gradient descent. Temporal scaling is
applied on the solution until dynamical feasibility is achieved.
Both the finite difference and scaling used in this method are
expensive operations when the number of trajectory pieces is
large. Liu et al. [6] propose a proper scaling factor for rest-to-rest
trajectories such that a single scaling operation suffices. Sun
et al. [9] formulate the problem as a bi-level optimization.
They estimate the projected gradient analytically through the
dual solution of the low-level QP, which is more accurate than
the numerical gradient. Nonetheless, the dynamical feasibility
is conservatively treated to formulate the QP. To avoid the
constraint on total duration, Richter et al. [10] use total du-
ration as a regularization term, thus making each duration an
independent variable. The time allocation is optimized through
gradient descent, while actuator constraints are also fulfilled by
scaling. However, the optimal ratio of time allocation under the
constrained case may differ a lot from the unconstrained case.
Consequently, scaling can ruin a trajectory where constraints
are violated on a very short piece. Burri et al. [3] optimize the
squared total duration instead. They soften all constraints by
penalizing them in the objective and optimize durations through
an NLP solver, while the pieces number is limited.

Trajectories with one-layer parameterization and gradient-
optimized time allocation in [10] can be unsatisfactory when so-
lution quality or time consumption counts the most. To improve
trajectory quality, Gao et al. [11] use two-layer parameterization
for higher degrees of freedom (DoF). They decouple geometrical
and temporal information of a rest-to-rest trajectory. A spatial
trajectory is optimized through QP within box-shaped corridors.
A temporal trajectory is then optimized by second-order conic
programming (SOCP) based on direct collocation [12], which
maps time to the spatial trajectory. The spatial trajectory can
be re-generated by a better time allocation. By alternating mini-
mization between these two-layer coefficients, the high DoF tra-
jectory can be much improved. In [13], they improve this method
by using polyhedron-shaped corridors for higher success rates.
Their method increases solution quality, but the computation
time is unsuitable for online usage. To reduce time consumption,
Almeida et al. [14] train a supervised neural network to learn
time allocation offline. Thus online refinement of its good initial
guesses can be done in real-time. However, the neural network
has to be trained case by case.

In this letter, we adopt the time regularized objective [10]
as well as the alternating minimization framework [13]. For
efficiency, only one-layer parameterization is used, of which
the spatial and temporal parts are optimized alternately. Each
optimization phase exploits the objective structure and is solved
algebraically, making it free from gradient estimation and step-
size choosing. To handle various constraints, we also design a
simple yet solid feasibility checker. The proposed framework
is able to generate aggressive trajectories at extremely high
frequency and not limited to the rest-to-rest case.

III. PRELIMINARIES

Differential flatness of quadrotor dynamics is validated by
Mellinger et al. [1]. It means the trajectory planning for a
quadrotor can be done solely in the translational space. The kin-
odynamic feasibility is implicitly transformed into smoothness
of the trajectory. Then, actuator constraints can be enforced by
restricting norms on high-order derivatives.

In this letter, we employ the piece-wise polynomial trajectory,
with each piece denoted as an N -order polynomial:

p(t) = cTβ(t), t ∈ [0, T ], (1)

where c ∈ R(N+1)×3 is the coefficient matrix, T is the duration
and β(t) = (1, t, t2, . . . , tN )T is a basis function.

It is worth noting that we only consider odd-order polynomial
trajectories. SinceN is odd, the mapping is bijective between the
coefficient matrix and the boundary condition. To further explain
this, consider derivatives of p(t) up to �(N − 1)/2� order:

d(t) = (p(t), ṗ(t), . . . , p(�(N−1)/2�)(t))T, (2)

we have d(t) = B(t)c where

B(t) = (β(t), β̇(t), . . . , β(�(N−1)/2�)(t))T. (3)

We denote dstart and dend by d(0) and d(T ), respectively. The
boundary condition of this polynomial is described by the tuple
(dT

start,d
T
end)

T. The following mapping holds:

(dT
start,d

T
end)

T = A(T )c, (4)
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Fig. 2. A trajectory P(t) contains M pieces. Each piece is fully determined
by its duration Tm and boundary condition dm = (dTm, dTm+1)

T.

where A(T ) = (BT(0),BT(T ))T is the mapping matrix with
2�(N + 1)/2� rows and (N + 1) columns. A(T ) is a square
matrix only if N is an odd number. Otherwise, A(T ) becomes
over-determined, which means a polynomial with c satisfying
(4) may not exist for any given (dT

start,d
T
end)

T.
Moreover, the inverseA(T )−1 exists and can be obtained with

zero overhead when N is an odd number. Burri et al. [3] explore
the structure of A(T ) and find that A(T )−1 can be computed
more efficiently through its Schur-Complement, which only
involves submatrix inverse. We take things one step further.
Actually, all entries of A(T )−1 are power functions of T ,
thus Gaussian-Elimination is applied to get its analytic form.
Consequently, time-consuming operation is no longer needed
when A(T )−1 is computed online. To achieve this, we pre-
compute matrices E,F,G,U,V,W ∈ RS×S offline, where
S = (N + 1)/2:

Eij =

⎧
⎨

⎩

∏i−1
k=1 k if i = j,

0 if i �= j.
,

Fij =

⎧
⎨

⎩

∏j−1
k=j−i+1 k if i ≤ j,

0 if i > j.

Gij =

S+j−1∏

k=S−i+j+1

k,

Uij =

⎧
⎨

⎩

1/
∏i−1

k=1 k if i = j,

0 if i �= j.

W = G−1,V = −WFU.

Following mapping matrices are computed online:

A(T ) =

⎛

⎝
E 0

(
FijT

j−i
)

S×S

(
GijT

S−i+j
)

S×S

⎞

⎠ ,

A(T )−1 =

⎛

⎝
U 0

(
VijT

j−i−S
)

S×S

(
WijT

j−i−S
)

S×S

⎞

⎠ .

Therefore, provided with an odd order, we show the practical
equivalence between the tuple (dstart,dend, T ) and (c, T ) in
the sense of polynomial representation.

Consequently, we consider an M -piece trajectory P param-
eterized by time allocation T = (T1, T2, . . . , TM )T as well as

boundary conditions D = (dT1 , d
T
2 , . . . , d

T
M+1)

T of all pieces,
as shown in Fig. 2. The trajectory is defined by

P(t) := dT
mA(Tm)−Tβ(t−

m−1∑

i=1

Ti), (5)

where t lies in the m-th piece and dm = (dTm, dTm+1)
T is a

boundary condition of the m-th piece. This definition implic-
itly involves (N − 1)/2 order continuity at boundaries of each
piece. Normally, some entries in D are fixed, such as waypoint
positions from a high-level planner [2]. We split D into two
parts, the fixed part DF which is viewed as constant, and the
free part DP which is to be optimized. The whole trajectory can
be fully determined by P = Φ(DP ,T).

IV. SPATIAL-TEMPORAL TRAJECTORY OPTIMIZATION:
UNCONSTRAINED CASE

In this section, we describe our method for jointly optimizing
spatial and temporal parameters of a trajectory, for the Uncon-
strained Case, where no constraint is considered.

A. Optimization Objective

We use the time regularized quadratic cost over the whole
trajectory, as the objective of the optimization:

J(P) =

∫ ∑M
m=1 Tm

0

(

ρ+

Dmax∑

i=Dmin

wi

∥
∥
∥P(i)(t)

∥
∥
∥
2
)

dt, (6)

where Dmin and Dmax are the lowest and the highest order of
derivative to be penalized respectively, wi is the weight of the
i-order derivative and ρ is the weight of time regularization. The
weight ρ adjusts the aggressiveness of the trajectory [3], which
allows total duration varies adaptively. For now, we consider the
unconstrained optimization:

min
DP ,T

J(DP ,T) (7)

where free boundary conditions and durations are decision vari-
ables. J(DP ,T) := J(Φ(DP ,T)) is used for brevity.

The cost Jm for the m-th piece can be calculated as

Jm = ρTm +Tr
{
dT
mA(Tm)−TQ(Tm)A(Tm)−1dm

}
, (8)

in which Q(Tm) is a symmetric matrix [10] consisting of high
powers of Tm, and Tr{·} is trace operation which only sums
up diagonal costs produced in three dimensions. The overall
objective can be formulated as

J = ρ ‖T‖1 +Tr

⎧
⎨

⎩

(
DF

DP

)T

CTH(T)C

(
DF

DP

)⎫
⎬

⎭
, (9)

H(T) =

M⊕

m=1

A(Tm)−TQ(Tm)A(Tm)−1, (10)

where H(T) is the direct sum of its M diagonal blocks, and
C is a permutation matrix. We make sure that the setting for
J is legal by assuming that the α-sublevel set of J(DP ,T)
for any finite α is bounded and only consists of positive time
allocation. For example, consecutive repeating waypoints with
identical boundary conditions fixed in DF are not allowed.
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B. Unconstrained Trajectory Optimization

To optimize (7), we propose an alternating minimization
procedure. The basic idea of AM is to divide decision variables
into groups then successively update each group with the others
fixed. AM is quite efficient when the objective structure can be
exploited so that updating by groups is a much cheaper operation
than updating jointly.

The procedure is shown in Algorithm 1. Initially, T0 is
solved for the provided D0

P . After that, the minimization of
the objective function is done through a two-phase process, in
which only one of DP and T is optimized while the other is
fixed.

In the first phase, the sub-problem

D∗
P (T) = argmin

DP

J(DP ,T) (11)

is solved for each Tk. We employ the unconstrained QP formu-
lation by Richter et al. [10], and briefly introduce it here. The
matrix R(T) = CTH(T)C is partitioned as

R(T) =

⎛

⎝
RFF (T) RFP (T)

RPF (T) RPP (T)

⎞

⎠ , (12)

then the solution is be obtained analytically through

D∗
P (T) = −RPP (T)−1RFP (T)DF . (13)

For efficiency, we solve the sparse linear system

RPP (T)X = −RFP (T)DF (14)

through Sparse LU Factorization to get D∗
P (T) since H(T) and

C are both sparse.
In the second phase, the sub-problem

T∗(DP ) = argmin
T

J(DP ,T) (15)

is solved for each Dk
P . In this phase, the scale of sub-problem

can be reduced into each piece. Due to our representation of
trajectory, once DP is fixed, the boundary conditions D isolate
each entry inT from the others. Therefore, Tm can be optimized
individually to get all entries of T∗(DP ). As for the m-th piece,

its cost Jm in (8) is indeed a rational function of Tm. We show
the structure of Jm and omit the deduction for brevity:

Jm(T ) = ρT +
1

T pn

pd∑

i=0

αiT
i, (16)

where pn = 2Dmax − 1 and pd = 2(Dmax −Dmin) +N − 1
are orders of numerator and denominator, respectively. The co-
efficient αi is determined by dm. Due to positiveness of Jm(T ),
we have Jm(T ) → +∞ as T → +∞ or T → 0+. Therefore,
the minimizer exists for

T ∗
m(DP ) = argmin

T∈(0,+∞)

Jm(T ). (17)

To find all candidates, we compute the derivative of (16):

dJm(T )

dT
= ρ+

1

T 1+pn

pd∑

i=0

(i− pn)αiT
i. (18)

The minimum exists in solutions ofdJm(T )/dT = 0, which can
be calculated through any modern univariate polynomial real-
roots solver [15]. In this letter, we utilize the Continued Fraction
method [16] to isolate all positive roots of any high order (≥5)
polynomial. The second phase is completed by updating every
entry T ∗

m(DP ) in T∗(DP ).

C. Convergence Analysis

Algorithm 1 is globally convergent. Moreover, it is faster
than conventional gradient descent used in time allocation re-
finement, under no assumption on convexity.

Theorem 1: Consider the process in Algorithm 1. For any
D0

P , we have limK→∞ ∇J(DK
P ,TK) = 0. For all K > 0,

min
0≤k≤K

‖∇J(Dk
P ,T

k)‖2F ≤ Mc
J(D0

P ,T
0)− Jc

K
,

where Mc and Jc are constants, ‖·‖F is Frobenius norm.
Proof: See [17] for details. �
Thm. 1 shows that our algorithm shares the same global

convergence rate as that of gradient descent with best step-
size [18]. The best step-size is practically unavailable. In con-
trast, our algorithm does not involve any step-size choosing in
its iterations. Sub-problems in Eq. (11) and Eq. (15) both are
solved exactly and efficiently due to their algebraic convenience.
The monotone decrease of objective function shows guaranteed
progress in each iteration, while gradient-based methods may
try bad step-size, thus making no/negative progress. Therefore,
Algorithm 1 is faster than gradient-based methods in practice.

Another key advantage of our algorithm is its capability of es-
caping from a local minimum in the time optimization. Watching
Eq. (9), despiteJ(DP ,T) is convex inDP as proved in [17], it is
a rational function which can have multiple local minima in Tm.
Therefore, a case may occur where the initial time allocation falls
into one of these local minima instead of the global minimum in
(0,+∞). Under this situation, naturally, the global minimum in
time allocation cannot be attained by gradient-based methods.
However, with our method, all local minima are compared
directly. Thus, the situation can be avoided.

It is worth noting that, here the global optimality is not
guaranteed because our algorithm still exploits local structures
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of the problem. Although convergence to stationary point is
ensured, we argue that strict saddle points are theoretically
and numerically unstable for our first-order AM method [19].
Moreover, when the stationary point is a strict local minimum,
we show that the convergence rate is faster.

Theorem 2: Let (D̂P , T̂) denote any strict local minimum of
J(DP ,T) to which Algorithm 1 converges. There exist Kc ∈
Z+ and γ ∈ R+, such that

J(DK
P ,TK)− J∗ ≤ 1

γ(K −Kc) + (J(DKc

P ,TKc)− J∗)−1
,

for all K ≥ Kc, where J∗ = J(D̂P , T̂).
Proof: See [17] for details. �
Thm. 2 shows that a faster convergence rate O(1/K) can

be attained for a strict local minimum than the general case in
Thm. 1. Note that it is possible to accelerate our method to
attain the optimal rate O(1/K2) of first-order methods [18]
or use second-order methods to achieve better performance.
However, we still employ the first-order AM process because
of its simplicity in implementation and its good performance
when the trajectory is far from optimum.

V. SPATIAL-TEMPORAL TRAJECTORY OPTIMIZATION:
CONSTRAINED CASE

In this section, we present our method to incorporate safety
and dynamical feasibility constraints into our optimization pro-
cess. To begin with, we introduce a computationally efficient
feasibility check method that applies to a wide range of con-
straints. Then this method is used in a constrained trajectory
optimization process.

A. Computationally Efficient Feasibility Check

A trajectory piece

p(t) = (p1(t), p2(t), p3(t))
T (19)

is parameterized as (1). For any given c and T , it may be of
interest whether a constraint G(p

(i)
1 (t), p

(i)
2 (t), p

(i)
3 (t)) < 0 is

satisfied by the corresponding p(t) for all t ∈ [0, T ]. We only
consider the case that G is a multivariate polynomial:

G(a, b, c) :=

dc∈R,ej∈N∑

e1+e2+e3≤dg

dc · ae1be2ce3 , (20)

where dg is the highest degree. Many kinds of constraints can
be expressed by G, such as the safe distance constraint to keep
away from an obstacle located at (0, 0, 0)T:

Gp(p1(t), p2(t), p3(t)) < 0, ∀t ∈ [0, T ],

Gp(a, b, c) := r2safe − (a2 + b2 + c2),

or maximum speed constraint:

Gv(ṗ1(t), ṗ2(t), ṗ3(t)) < 0, ∀t ∈ [0, T ],

Gv(a, b, c) := a2 + b2 + c2 − v2max.

Provided with any piece p(t), we check whether con-
straint G is fulfilled for all t ∈ [0, T ]. We define G(t) :=
G(p

(i)
1 (t), p

(i)
2 (t), p

(i)
3 (t)) which is indeed a polynomial of t.

The procedure is as follows: Firstly, check the sign of G(0) and
G(T ). Then, If both two endpoints satisfy the constraint, we
have to make sure the constraint is not violated inside the interval
(0, T ). Instead of locating all extrema of G(t) and checking their
values, we only need to check the existence of root of G(t) = 0
in the interval. If the equation has any root in (0, T ), then p(t)
is infeasible. Fortunately, it is convenient for a polynomial to
achieve this leveraging Sturm’s Theory [20]. Now that neither
0 nor T is a root of G(t) = 0, we compute the Sturm sequence
g0(t), g1(t), g2(t), . . . by

g0(t) = G(t),
g1(t) = Ġ(t),

−gk+1(t) = Rem(gk−1(t), gk(t)), (21)

where Rem(gk−1(t), gk(t)) is remainder in the Euclidean divi-
sion of gk−1(t) by gk(t) [20]. When gk(t) becomes constant, we
stop expanding this sequence. LetVsign(τ) denote the number of
sign variations of Sturm sequence at t = τ , in which zero values
should be ignored. Then the number of distinct roots inside
(0, T ) equals Vsign(0)− Vsign(T ). Here the feasibility check
is done for G(·, ·, ·) < 0. Sometimes, a constraint has the form
G(·, ·, ·) ≤ 0. In practice, it can be equally handled by checking
G(·, ·, ·) < ε, where ε is a small positive real number. What’s
more, non-polynomial constraint can also be efficiently checked
through its Taylor series within acceptable approximation error.

In conclusion, our method converts the feasibility check into
the root existence check for polynomials, without computing the
root itself. Compared with methods used in [3] and [21], ours
is straightforward and involves no redundant operations such as
numerical iteration or recursion.

B. Constrained Trajectory Optimization

For the Constrained Case, we enforce constraints on norms
of derivatives of the trajectory:

min
DP ,T

J(DP ,T) (22)

s.t. ‖P(n)(t)‖ ≤ σn, 0 ≤ t ≤ ‖T‖1 (23)

P = Φ(DP ,T), 1 ≤ n ≤ N (24)

Generally, the constraint does not have to be like (23). If only
a constraint is representable in (20) and its feasible solution can
be constructed, then it can be handled in our optimization. With
a slight abuse of notation, we use G(DP ,T) ≤ 0 to denote that
Φ(DP ,T) is feasible. G(dm, Tm) ≤ 0 is used to denote that
the m-th piece is feasible. We say G(dm, Tm) ≤ 0 is tight by
meaning that, at least one constraint is tight at a t on the m-th
piece.

The constrained version of our method is shown in Algo-
rithm 2. An initial feasible trajectoryP0 can be constructed from
conservative time allocation. The spatial-temporal parameters
(D0

P ,T
0) are then recovered from the trajectory, which is used

in the consequent two-phase constrained minimization.
In the first phase, Tk is fixed. An illustration is provided in

Fig. 3(a), where the unconstrained minimum D̃P is obtained
as is done in Algorithm 1. The trajectory Φ(D̃P ,T

k) may not
be feasible. Since the feasibility of (Dk

P ,T
k) is ensured in the
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Fig. 3. Illustration for the two phases in constrained optimization.

previous iteration, a line search is done as

min
λ∈[0,1]

J(D(λ),Tk), s.t. G(D(λ),Tk) ≤ 0, (25)

whereD(λ) is the convex combination of D̃P andDk
P . Convex-

ity of J(·,Tk) implies the convexity of J(D(·),Tk). Moreover,
λ = 0 is a feasible solution, while λ = 1 is the unconstrained
global minimum. We simply take λ∗ = 1 if it is feasible. If
not, a bisection procedure is done on the interval [0,1]. In this
procedure, the feasibility check method described in Sec. V-A
is employed to shrink the interval. The procedure stops at an
acceptable interval length, with λ∗ taking the feasible lower
bound. After that, we update Dk+1

P by D(λ∗). Meanwhile, a
set Δ is maintained to store indices of tightened pieces.

In the second phase, Dk+1
P is fixed. An illustration is given in

Fig. 3(b). Each entry in Tk is updated by solving

min
T∈(0,+∞)

Jm(T ), s.t. G(dk+1
m , T ) ≤ 0. (26)

As stated in Algorithm 1, all extrema of Jm(T ) can be computed
exactly. However, the constrained minimum may not exist in
them. It can be any T̃ at which some constraints are exactly
tightened. When infeasible extremum exists, T̃ must be located
between any infeasible extremum and the neighboring feasible
one or T k

m. A bisection procedure with feasibility check suffices
to compute T̃ . After that, we compare Jm(T ) on those feasible
extrema together with T̃ .

When all iterations are done, the set Δ indicates pieces stuck
by active constraints. If Δ is not empty, we recursively apply
Algorithm 2 on split sub-trajectories, while boundary conditions
of pieces indexed by Δ should be totally fixed. Finally, P∗ is
updated and returned. The recursive process is essential, since
it ensures that pieces with no room for optimization do not
prevent other pieces to decrease the objective. Algorithm 2
is globally convergent to a solution set where constraints are
tight or local minimum is attained, which can be checked by
Zangwill’s theorem [22].

VI. RESULTS

A. Comparison of Feasibility Check Methods

Firstly, we compare our feasibility check method with
Mueller’s recursive check [21], Burri’s analytical check [3],
as well as the widely used sampling-based check. Mueller’s
method uses the extremum in each axis as an upper bound of
derivative norm, which has closed-form solutions for low-order
(≤ 5) trajectories. The bound becomes tighter as the interval to

be checked shrinks in recursion. Burri’s method directly finds
the point with maximal constraint violation by calculating roots
of the corresponding polynomial.

In each case, 1000 trajectory pieces are randomly generated
with velocity constraints to estimate time consumption. As is
shown in Fig. 4, our method outperforms the others because of its
resolution independence and scalability with higher polynomial
orders. The recursive check and sampling-based check may have
false positives under rough temporal resolution. The efficiency
of analytical check and recursive check deteriorates with higher
orders. In comparison, our method is able to do a solid check
within 1 μs.

B. Benchmark for Trajectory Optimization Methods

Secondly, we compare our optimization method with
some state-of-the-art waypoint-based methods, i.e., Mellinger’s
method [1] and Richter’s method [2]. Mellinger’s method opti-
mizes time allocation with total duration fixed, using backtrack-
ing gradient descent (BGD). The dynamical feasibility is ensured
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Fig. 4. Computation time for feasibility check of speed constraint, under
different temporal resolution (upper) and different polynomial order (lower).

Fig. 5. Time regularized minimum jerk trajectory optimization profiles for
different polynomial orders in constrained case. Our algorithm works well with
different orders. Normally, a largeN ensures high-order continuity but increases
computation time and trajectory cost.

by Liu’s time scaling factor [6]. Richter’s method optimizes
derivatives on waypoints through an unconstrained QP while
time allocation is adjusted by gradient descent and scaling. To
use it in constrained case, we soften the constraints by penalizing
them in objective function as suggested in [3] and optimize the
time allocation through NLopt [23].

The benchmark is done as follows: Sequences of waypoints
are generated by random walk with step uniformly distributed
over [−3.0 m, 8.0 m] for each axis. The maximum speed and
acceleration rate are set to 5.0 m/s and 3.5 m/s2, respectively.
Derivatives on the first and last waypoints are set to zero. We set
N = 5hereafter because of its highest efficiency shown in Fig. 5.
It also captures the most relevant quadrotor dynamics [21].
Moreover, we set ρ = 512.0, Dmax = Dmin = 3, w3 = 1.0.
Each method is applied to 1000 sequences of waypoints for
a given piece number. The optimization stops until the relative
decrease of objective is less than 0.001. The cost is then normal-
ized by that of Algorithm 1. All comparisons are conducted on
an Intel Core i7-8700 CPU under Linux environment.

Besides, a more intuitive comparison is also provided. We
adopt the high-level waypoint planner proposed by Richter
et al. [2]. Some compulsory waypoints are pre-chosen in a ran-
dom map. After that, an optimal path is produced by RRT* [24],
which starts from an initial position and passes those compulsory
waypoints. All waypoints of the path is used to generate a
trajectory. When collision occurs on a particular trajectory piece,
the midpoint of its two endpoints is simply added as an additional
waypoint. The trajectory is re-optimized, and the process is
repeated until the whole trajectory is collision-free.

As is shown in Fig. 6, our Algorithm 2 has the fastest speed
and the lowest cost when constraints are taken into consideration.
Our method is capable of computing trajectories with 60 pieces
within 5 ms, i.e., 150 Hz at least. However, both benchmarked

Fig. 6. Comparisons between our method, BGD with Time Scaling [1] and QP
with NLopt [2]. In Fig. 6(a), the performance of different methods are provided.
Dashed lines indicate standard deviation. In Fig. 6(b), an intuitive comparison
is given. More quantitative comparisons for lap time and trajectory length are
included in the attached video.

methods fail to accomplish real-time computing for trajectories
with more pieces. Moreover, our Algorithm 2 always obtains bet-
ter trajectories in terms of the cost function, while benchmarked
methods cannot fully utilize the capability of system dynamics.
The main reason is that our method separately minimizes the cost
on each piece as much as possible, especially when a relatively
large ρ is used. For a small ρ, our method can still outperform the
others in computation time while their final costs can be much
the same.

C. Aggressive Flight Experiment

To validate the performance of our method in real-world ap-
plications, we deploy it on a self-developed compact quadrotor
platform. The proposed method is implemented with C++11, and
all tasks are conducted on an onboard computer with Intel Core
i7-8550U CPU. The pose of our quadrotor is obtained through
a robust visual-inertial state estimator [25]. Besides, no external
positioning system nor offboard computing is used. A geometric
controller is employed for trajectory tracking control [26].

The experiment is conducted in a complex indoor scene,
which is shown in Fig. 1. A globally consistent map of the
scene is pre-built, from which some compulsory waypoints are
selected offline. An optimal path is generated by the aforemen-
tioned technique. Our method generates an optimal trajectory
online based on the path within milliseconds. Immediately, the
quadrotor starts its aggressive flight. Different from parameters
used in benchmark, we set vmax = 4.0 m/s, amax = 4.5 m/s2

and ρ = 1024.0. The aggressive flight along with the generated
trajectory is shown in Fig. 7. More details are included in the
attached video.
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Fig. 7. Details of our aggressive indoor flight. Fig. 7(a) shows some snapshots
of our experiment. In Fig. 7(b), the whole trajectory is visualized in the pre-built
map, whose speed is up to 4.0m/s. In Fig. 7(c), velocity/acceleration profiles
are provided. The trajectory fully employs capability of the quadrotor in terms
of maximum velocity/acceleration rate.

VII. CONCLUSION

In this letter, we propose an efficient trajectory generation
method for quadrotor aggressive flight, which has guaranteed
convergence and feasibility. Benchmarks for components in our
method show its superior computation speed, trajectory quality
as well as scalability against state-of-the-art methods. Aggres-
sive flight experiments in limited space with dense obstacles
validate the practical performance of our method. Currently, in
the proposed framework, positions of waypoints are fixed during
optimization. However, the method is underlying compatible
with waypoints as part of decision variables. Our feasibility
checker also supports various safety constraints. In the future, we
plan to apply and improve our method in time-critical large-scale
motion planning scenarios where complex spatial constraints
exist.

REFERENCES

[1] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. IEEE Int. Conf. Robot. Autom., Shanghai,
China, May 2011, pp. 2520–2525.

[2] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Proc. Int.
Symp. Robot. Res., Singapore, Dec. 2013, pp. 649–666.

[3] M. Burri, H. Oleynikova, M. Achtelik, and R. Siegwart, “Real-time visual-
inertial mapping, re-localization and planning onboard mavs in unknown
environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Hamburg,
Germany, Sep. 2015, pp. 1872–1878.

[4] D. P. Bertsekas, Dynamic Programming and Optimal Control. Belmont,
MA, USA: Athena-Scientific, 1995.

[5] A. Beck, First-Order Methods in Optimization. Philadelphia, PA, USA:
SIAM, 2017.

[6] S. Liu et al., “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-D complex environments,” IEEE Robot.
Autom. Lett., vol. 2, no. 3, pp. 1688–1695, Jul. 2017.

[7] F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory generation for
quadrotors using fast marching method and Bernstein basis polynomial,”
in Proc. IEEE Int. Conf. Robot. Autom., Brisbane, Australia, May 2018,
pp. 344–351.

[8] L. Campos-Macías, D. Gómez-Gutiérrez, R. Aldana-López, R. de la
Guardia, and J. I. Parra-Vilchis, “A hybrid method for online trajectory
planning of mobile robots in cluttered environments,” IEEE Robot. Autom.
Lett., vol. 2, no. 2, pp. 935–942, Apr. 2017.

[9] W. Sun, G. Tang, and K. Hauser, “Fast UAV trajectory optimization using
bilevel optimization with analytical gradients,” 2018, arXiv: 1811.10753.

[10] A. Bry, C. Richter, A. Bachrach, and N. Roy, “Aggressive flight of fixed-
wing and quadrotor aircraft in dense indoor environments,” Int. J. Robot.
Res., vol. 34, pp. 969–1002, 2015.

[11] F. Gao et al., “Optimal trajectory generation for quadrotor teach-and-
repeat,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1493–1500, Apr. 2019.

[12] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl,
“Time-optimal path tracking for robots: A convex optimization approach,”
IEEE Trans. Autom. Control, vol. 54, no. 10, pp. 2318–2327, Oct. 2009.

[13] F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen, “Teach-
repeat-replan: A complete and robust system for aggressive flight in
complex environments,” IEEE Trans. Robot., to be published, doi:
10.1109/TRO.2020.2993215.

[14] M. M. de Almeida, R. Moghe, and M. R. Akella, “Real-time minimum
snap trajectory generation for quadcopters: Algorithm speed-up through
machine learning,” in Proc. IEEE Int. Conf. Robot. Autom., Montreal,
Canada, May 2019, pp. 683–689.

[15] M. Sagraloff and K. Mehlhorn, “Computing real roots of real polynomials,”
J. Symbolic Comput., vol. 73, pp. 46–86, 2013.

[16] E. P. Tsigaridas and I. Z. Emiris, “Univariate polynomial real root iso-
lation: Continued fractions revisited,” in Proc. Conf. Annu. Eur. Symp.,
Zwitserland, Zurich, Sep. 2006, pp. 817–828.

[17] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Detailed proofs of alternating
minimization based trajectory generation for quadrotor aggressive flight,”
2020. [Online]. Available: https://arxiv.org/abs/2002.09254

[18] Y. Nesterov, Lectures on Convex Optimization. Berlin, Germany: Springer,
2018.

[19] J. D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M. I. Jordan, and
B. Recht, “First-order methods almost always avoid strict saddle points,”
Math. Programm., vol. 176, pp. 311–337, 2019.

[20] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geom-
etry. Berlin, Germany: Springer, 2003.

[21] M. W. Mueller, M. Hehn, and R. DAndrea, “A computationally efficient
motion primitive for quadrocopter trajectory generation,” IEEE Transact.
Robot., vol. 31, no. 6, pp. 1294–1310, Dec. 2015.

[22] W. I. Zangwill, Nonlinear programming: A Unified Approach. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1969.

[23] S. G. Johnson, “The NLopt nonlinear-optimization package,” [Online].
Available: http://github.com/stevengj/nlopt

[24] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, pp. 846–894, 2011.

[25] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Trans. Robot., vol. 34, no. 4,
pp. 1004–1020, Aug. 2018.

[26] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of
a quadrotor UAV on SE(3),” in Proc. IEEE Control Decis. Conf., Atlanta,
Georgia, USA, Dec. 2010, pp. 5420–5425.

https://dx.doi.org/10.1109/TRO.2020.2993215
https://arxiv.org/abs/2002.09254
http://github.com/stevengj/nlopt


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


