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Abstract— The visible capability is critical in many robot ap-
plications, such as inspection and surveillance, etc. Without the
assurance of the visibility to targets, some tasks eventually turn
out to be unfinished or failed. In this paper, we propose visibility
guaranteed planner by star-convex constrained optimization. The
visible space is modeled as star convex polytope (SCP) by
nature and is generated by finding the visible points directly
on point cloud. By exploiting the properties of the SCP, the
visibility constraint is formulated for trajectory optimization.
The trajectory is confined in the safe and visible flight corridor
which consists of convex polytopes and SCPs. We further make
relaxation to the visibility constraints and transform the con-
strained trajectory optimization problem into an unconstrained
one that can be reliably solved. To validate the capability of
the proposed planner, we present the practical application in
site inspection. The experimental results show that the method
is efficient, scalable, and visibility guaranteed, presenting the
prospect of application to various other applications in the
future.

I. INTRODUCTION

In many applications, such as inspection and surveillance,
enabling a drone to adjust its motion to keep interesting
objects visible has high priority. Many tasks even put forward
a strict demand on visibility. For instance, in substation
inspection and factory security patrolling, specific positions
must be repeatedly observed one by one in large-scale scenes.
The tasks are regarded as unsuccessful or failed if any
prescribed position is left unobserved. Therefore, visibility is
a key constraint while designing a drone trajectory planner
for these applications.

Despite the significance of visibility, most works [1]–[3]
in the trajectory planning literature are not able to have a
guarantee on it. Typically, they treat the visibility as a utility
and optimize a handcrafted visibility cost along with other
terms such as smoothness. However, such a formulation may
trade-off visibility for a smoother motion, which results in
soft visibility constrain. Another work [4] deterministically
generates motion primitives and selects the best one among
them. Although this method ensures viability in a resolution
complete manner, it inherently suffers from the discretization
error and the curse of dimension, which cannot generate an
optimal trajectory with pleasing maneuverability.

To bridge the above gap, this paper proposes a planner
that can efficiently generates a trajectory with visibility
assurance. To generalize to various applications, we define
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Fig. 1. Left: a composite image of the real-world experiment in the
view of fisheye camera. The cylindrical objects are to be inspected, which
are marked by yellow bounding boxes. Right: Illustration of the proposed
visibility planner. The SCPs (yellow meshes) are constructed at the inspect
spot(green dot). They form the SVC together with the convex polytopes(blue
meshes) to ensure the visibility and safety of the trajectory(red line).

the task representative point (TRP), which refer to the sites
for inspection, the frontiers for the exploration, the places
for surveillance, etc. Central to our approach is the visible
space representation w.r.t. the TRPs and the corresponding
constraint formulation. As we know, the line-of-sights from
a TRP to space naturally form a star-shaped region. Based
on this idea, we model the visible space as the star convex
polytope (SCP), a compact and analytic representation. By
utilizing the property of the constructed SCP, we formulate
visibility constraint to facilate star-convex constrained opti-
mization.

In summary, the proposed planner optimizes trajectory
in a safe and visible corridor (SVC) which encodes vis-
ibility and safety requirement. The SCPs, accounting for
the visibility constraints, make one part of it. The SVC is
constructed by connecting all the SCPs by convex polytopes.
The whole process runs in three steps. Firstly, the global
optimal tour (i.e., the visiting sequence of the SCPs) is found
and refined on SCPs. Secondly, the kinodynamic A* path
searching is conducted to find a collision-free path. Finally,
the corridor is constructed incrementally by connecting all
the SCPs with sequences of overlapping convex polytopes
utilizing the searched trajectory. With the constructed SVC,
we follow the work of [5] to optimize the trajectory spatially
and temporally. The visibility constraint is further relaxed
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to convert the optimization problem into an unconstrained
one that can be solved reliably and efficiently. To validate
the planner, we apply it in the task of aerial inspection.
Benchmark results show that our method is light-weighted,
efficient, and scalable. To conclude, the contributions of this
paper are as follows:

1) Introduce a new visible space representation the star-
convex polytope (SCP) and propose to formulate the
visibility constraint for star-convex constrained opti-
mization.

2) Propose a visibility guaranteed planning framework,
while retains the safety, feasibility, and energy effi-
ciency of trajectory.

3) Validate the proposed method by implementing simu-
lation and real-world experiments in aerial inspection.

II. RELATED WORK

A. Trajectory Planning with Visibility

Many works [3], [6] in trajectory planning design the vis-
ibility metric utilizing the minimum value of the Euclidean
Signed Distance Field (ESDF) on the line between the TRPs.
and the robot. Since the metric is not differentiable, they use
a sampling-based method to handle the metric in trajectory
generation, which is time-consuming. Wang et al. [2] propose
a differentiable metric and yet it lacks a strong guarantee on
visibility because the trajectory optimization trades off many
costs. Instead of explicitly optimize visibility, Zhou et al. [7]
present a perception-aware strategy. Nevertheless, the task-
specific method can hardly be extended to other scenarios.
Zhou et al. [8] propose an efficient exploration framework
that naturally adapts to inspection tasks, whereas they only
consider visibility in the sampling-based front-end. In this
paper, we efficiently extract the visible space by SCP to
facilitate trajectory planning.

B. Trajectory Planning For Quadrotor

Trajectory planning for quadrotors can be categorized
into the hard-constrained and soft-constrained approaches.
The former formulates the trajectory generation as NLP to
trade off several objectives, but they usually suffer from
the issue of local minima [9]. By exploiting the properties
of B-splines, Zhou et al. [10] propose a method but the
construction of ESDF is time-consuming, especially for the
large-scale trajectory planning. While an ESDF-free planner
is proposed [11], but the trajectory generated highly rely on
and limit to the collision- free guiding path. Hard-constrained
methods usually formulate the problem as quadratic pro-
gramming (QP) problem [12] with trajectory represented as
piecewise polynomials. The safety can be ensured by extract-
ing convex safe regions [13]. To obtain more reasonable time
allocation, alternating minimization [14] and mixed integer-
based [15] based approach are proposed. Recently, Wang et
al. [5] proposed a spatial and temporal optimization-based
framework, which efficiently handles a wide variant of con-
straints. We follow the work [5] for trajectory optimization
in this paper.

III. PROBLEM STATEMENT

Consider a list of TRPs in 3D space C = {ci ∈ R3|1 ≤
i ≤ N}. The robot starting from the position ps ∈ R3 is
expected to inspect all of the points in C one by one and
finally rest at the desired postion pf ∈ R3. Commonly, the
duration of inspection for each point is required to be last
for at least a specific time T = {τi ∈ R|1 ≤ i ≤ N}. For an
abitrary point in R3, ci is supposed to be visible to it if the
line segment from the point to ci is collision free. Denote
Si ⊆ R3 form the space where the point vi is visible. Since
the occulusion effect against obstacles i.e. the visibility is
the focus of this paper, we make the following assumptions:

1) The sensor mounted on the robot has omnidirectional
coverage, which is one kind of set up of UAVs and
has certain research works [16].

2) The visibility condition of robot is satisfied only when
the whole body of it is in the ball-shaped sensible
regions around the points C.

IV. VISIBLE SPACE REPRESENTATION

For the TRPs C to be seen,we need to obtain the space S
where the sites are visible to the drone. However, construct-
ing a star-shape visible region on the point cloud map is
non-trivial. Collision checking of the rays starting from the
sites ci to the space needs either frequent kd-tree queries
or discretization of the space. Apparently, these kinds of
straightforward solutions are arduous and time-consuming.
Inspired by [17]–[19], we introduce a new method to con-
struct visibility space represented by star convex polytope,
with the emphasis on compactness and efficiency.

A. Star Convex Polytope Construction

In this paper, the obstacles are represented by point
cloud map Mg which is organized in k-d tree structure.
Our method to construct star convex polytope on Mg is
composed of four steps: 1) points retrieve and augment,
2) points transformation, 3) convex hull construction, 4)
inversion. The main idea of the method is to find the visible
points by point transformation.

In order to construct the star-shaped region within a sphere
boundary with radius R, we retrieve the local point cloud
Mv surround the point ci by the range query on Mg .
In addition, augmented points, which are evenly sampled
on the sphere boundary, are added to better facilitate the
construction.

With the point set Mv and center ci, we perform point
transformation that flip all the points to outside of the sphere
boundary. As shown in the Figure 2, the point x is transfer to
x̂ along the ray −→cix. The corresponding function is suppose
to be monotonically decreasing. Here, we simply use the ball
flipping function with ball radius r:

x̂ = F (x) = x− ci + 2(r − ‖x− ci‖)
x− ci
‖x− ci‖

. (1)

Then, we calculate the convex hull of the flipped points
by the efficient convex hull algorithm [20]. Inherently, points
that lie on the convex hull are the images of the visible points.



Fig. 2. Top: Illustration of SCP construction in 2D. The blue dotted curve
is the inversion of the convex hull. Bottom: SCP visualization in 3D as
colorful mesh. It is generated on point cloud with R = 6m.

Similarly, the convex hull is the image of the underlying star-
shaped boundary of visible space. Thus we can obtain the
SCP by applying the inversion of (1) on the convex hull
and denote it as Si. Morever, the point that can be mapped
outside the convex hull is bound to be visible by ci. The
Point-In-SCP check can be performed by checking whether
the flipping of the point is outside of the convex hull. This
property of SCP will be employed in the following sections.

B. Star-Convex Constrained Optimization

The visibility planning entails the study of the following
optimization problem:

min
x

J (x), s.t. x ∈ Si, (2)

where J (x) is the user defined const function. Suppose the
SCP is closed by K faces in R3. Instead of considering it
directly, the flipped convex polytope Pi is utilized. By the
H−representation of convex polytope, it can be defined as

Pi = {x ∈ R3|Ax � b}, (3)

where the matrix A = [nT1 , · · · , nTK ]T ∈ RK×3 is build
by the outer normal vectors of each face ni, i = 1, · · · ,K

and b = [nT1 a1, · · · , nTKaK ] ∈ RK is formed by the arbitry
points ai on each faces. By the property of SCP, the visbility
constraint is equivent to the ensurance that the flipped point
x̂ is outside of Pi, which is expressed as

Ξ
(
x̂) > dmin, (4)

where dmin is the user defined safe margin and Ξ(·) is the
signed distance fuction on Pi. The signed distance equals
to zero on the surface of the convex hull. The inside and
the outside of it corresponding to the negative and positive
euclidean distance respectively. To be more specific, the
signed distance is defined as

Ξ(x̂) = max
{
nTi (x̂− ai)

∣∣∣i = 1, 2, · · ·K
}
. (5)

Unexpectedly, the maximum function introduce the non-
smooth gradient and keep it away form the efficient solution
of the optimizaiton with sophisticated solvers. As a matter
of fact, the point visibility constraint can be enfored via
smooth approximation of the maximum function. Inspired
by [21], we employ the log-sum-exp function to make the
approximation. Denote di = nTi (x̂−ai) for all i = 1, · · · ,K.
The (5) can be written as

Ξ(x̂) = LSE
(
d1, · · · , dK

)
=

1

α
log
(
eαd1 + · · ·+ eαdK

)
,

(6)
where the α ∈ R+ is an adjustable variable that
can control the quality of the approximation, with
LSE

(
d1, d2, · · · , dK

)
→ max

(
d1, d2, · · · , dK

)
for α →

+∞. Furthermore, we make relaxation of the original op-
timization problem (2) by constraint violation to convert it
into an unconstraint problem:

min
x

J (x) + V(’LSE), (7)

where
V(’LSE) = λmax

{’LSE, 0}3
. (8)

The λ ∈ R+ is the penalty weight and the ’LSE stand for’LSE(x|Si) = dmin −
1

α
log
( K∑
i=1

eαdi
)
. (9)

Apparently, the violation term (8) preserve the C2 condition,
making the second order gradient attainable. Given the
visible space Si, we can derive the gradient of V w.r.t. x
from (1), (8) and (9) and denote it by gscp. The gradient
is zero when ’LSE ≤ 0, and for ’LSE > 0, the gradient is
given by

gscp =
∂V
∂x

= 6λ’LSE2

K∑
i=1

eαdini

K∑
i=1

eαdi

r

‖x‖3
(
‖x‖2−xxT−‖x‖

3

2r

)
.

(10)
We will employ the formation (7) for visibility planning in
the following section.



Fig. 3. The whole pipeline is conducted in three steps: 1) route generation
and refinement 2) path finding 3) SVC construction 4) trajectoy optimiza-
tion.

V. VISIBILITY GUARANTEED PLANNER

As is shown in the Figure 3, a complete pipeline of
visibility guaranteed planner is presented in this section.
Due to the differential flatness property of multicopters, we
can optimize the trajectory in the space of the selected flat
output {px, py, pz, ψ} (i.e. the translation of the center of
mass and the Euler-yaw angle). To facilitate the trajectory
optimization, the mapMc is constructed by the one-to-eight
cubic inflate of the points in the map ofMg . TheMc encode
the configuration space, and the SCP generated on it can be
directly employed as the visibility constraint for trajectory
optimization.

A. Route Generatoin and Refinement

In order not to introduce the binary variable to the whole
problem, a reasonable visiting sequence of the spots can
be obtained in advance by solving the traveling salesman
problem (TSP). Similar to [8], we model it as a standard
Asymmetric TSP (ATSP) that can be solved efficiently by
LinKernighan heuristic (LKH) [22]. we further optimize
route waypoints {wi ∈ R3|i = 1, · · · , N} on the SCPs to
direct the robot for more efficient trajectory. The problem is
formulated as finding the minimum of the sum of length on
SCPs:

min
w1,··· ,wN

‖ps − w1‖+ ‖wN − pf‖+
N∑
i=2

‖wi − wi−1‖,

s.t. wi ∈ Si, ∀i = 1, · · · , N.
(11)

For simplification, w0, wN+1 are alternatively used for ps
and pf hereafter. According to (7), we further make a
relaxation of (11) to convert it to an unconstrained NLP
(nonlinear programming) with cost function

Jw =
N∑
i=1

»
‖wi − wi−1‖2 + ε+ ΛT

N∑
i=1

V(’LSE(wi|Si)),
(12)

where the Λ = [λ1, · · · , λN ]T ∈ RN is the penalty weight
vector and ε is a small value number for C2 condition. By
utilizing the previously-derived gradient gscp, the gradient

propagation of Jw can be obtained for w1, · · · , wN :

∂Jw
wi

=
‖wi − wi−1‖»
‖wi − wi−1‖2 + ε

− ‖wi+1 − wi‖»
‖wi+1 − wi‖2 + ε

+λigscp.

(13)
Then, the route w0 → w1 → w2 → · · · ,→ wN → wN+1

can be obtained by combining the problem of TSP with the
optimizaiton problem (11), which makes preparation for the
corridor construction afterwards.

B. Safe and Visible Corridor Construction

The route generated is not collison free but provide
promising flight directions. The route waypoints serve as
local goals for kinodynamic A* to search for a collison free
path. We convert the point cloud map to voxel map and
perform the search on it, which can save orders of time.

Based on the searched path, the SVC can be constructed
incrementally by connecting the SCPs by sequences of
overlapping convex polytopes. For the convex polytope gen-
eration, we adopt the efficient method presented in [17]
which directly makes modifications to SCP. Consequently,
the elements of the corridor can be organized in a unified
struct. The intersection between the path and convex polytope
is calculated by recursively subdivide the Bézier form of the
trajectory and checking the control points of it. For the SCP,
the intersection between the path and it can be found via
utilizing the property of the SCP. The convex polytope is
built at the intersection until it reaches the next waypoint.
Note that we add some augment points to separate the jth

and the (j + 2)th convex polytopes.

C. Trajectory Optimization

Given the constructed SVC, the trajectory generation
problem can be formulate as the following time-spatial
optimization problem:

min
σ(t)

∫ TΣ

0

‖σ(3)(t)‖2dt+ ρTΣ, (14)

s.t. [σ(0), σ(1)(0), σ(2)(0)] = [ps, vs, as], (14a)

[σ(TΣ), σ(1)(TΣ), σ(2)(TΣ)] = [pf , vf , af ],

σ(t) ∈ F , ∀t ∈ [0, TΣ], (14b)

‖σ(1)(t)‖ ≤ vm, ‖σ(2)(t)‖ ≤ am,∀t ∈ [0, TΣ], (14c)

σi(t) ∈ Si, Ti > τi,

∀i = 1,2, · · ·,N , (14d)

where the σ(t) : R 7→ R3 is a polynomial spline over
[0, TΣ] with time allocation [T1, T2, · · · , TN ] on SCPs, TΣ

the total time of σ(t), ρ the time regularization weight.
The trajectory is constrained to be collision free, dynamic
feasible, and visibility capable, which corresponding to the
condition (14b), (14c) and (14d) respectively. Then, we
denote by F the resultant safe and visible corridor, vm and
am the dynamic limits, σi(t) the segment of σ(t) that assign
to the ith SCP.

To solve the optimizaiton problem (14), we generally
adopt the directly constructed minimum control trajectory



Fig. 4. Simulation in large scene with scale 40 × 150m. The scene is composed of 150 pillar-shaped obstacles and 60 ring-shaped ones. There are
randomly generated 40 spots for inspection and the corresponding SCPs are shown in different colors. The trajectory is generated in 4.4s and is guaranteed
to inspect all the sites.

MINCO from [5]. Similar to [5], smooth maps are utilized to
exactly eliminate spatial and time constraints. The dynamic
constraint (14c) is transformed into a finite-dimensional one
via integral of constraint violation. For brevity, we refer
reader to [5] for more details.

For star-convex constraint in (14d), we make relaxation
via integral of constraint violations. According to (7), we
eliminate the constraint by defining the time integral penelty
for visibility:

I(Si, ηi) =
Ti
ηi

ηi∑
j=0

V
(’LSE(σ(j

Ti
ηi

)|Si
))
, (15)

where Ti is the time for the i segment of the trajectory,
ηi controls the relative resolution of the quadrature. For
the minimum time constraint in (14d), we take the decision
variable mapping

Ti = eξi + τi, (16)

to eliminate the constraint as well, where ξ = (ξ1, · · · , ξN )
is C∞ diffeomorphic to T = (T1, · · · , TN ) . By incorpo-
rating (15) and (16) into the optimization framework [5],
the optimization problem (14) can be transformed into the
unconstrained control effort minimization problem which can
be solved efficiently and reliably.

VI. APPLICATION ON AERIAL INSPECTION

Motivated by the need to regularly and regulate inspect
sites [23], we test our planner on site inspection. The task
requires that the drone can observe every spot for enough
time while saving time and energy as much as possible to
facilitate the mission.

A. Simulation and Benchmark Comparisons

We test the proposed method in a randomly generated
environment consisting of pillar-shaped and ring-shaped ob-
stacles. To demonstrate the superiority of our method in
various environments with different scales,
• Small: 20× 20m, 15 pillars and 6 rings, 3 spots.
• Medium: 40× 40m, 60 pillars and 20 rings, 10 spots.

TABLE I
STATISTIC ON TRAJECTORY QUALITY

Scene Scale Method Traj dur (s) Int (J2) Vis cap

Small
Zou et. al 6.9 546.5 80%
Proposed 7.7 159.3 100%

Medium
Zou et. al 31.4 819.5 54%
Proposed 32.8 371.2 100%

Large
Zou et. al 63.5 1063.9 37%
Proposed 65.3 487.8 100%

• Large: 80× 80m, 150 pillars and 60 rings, 20 spots.
We set the dynamic limits of drone as vmax = 4.0m/s and
amax = 6.0m/s. All the simulations are conducted with a
2.6 GHz Intel i7-9750H processor.

In the implementation, we set R = 6.0m to confine
the SCP in a ball, r = 20m for ball flipping. In the
trajectory generation, we use, ρ = 150, ηi = 10. For
the LSE function, we set α = 100.0, which can make an
approximation with the precision of 0.01. We benchmark
the method with [8] which can naturally adapt to our
inspection task. For a fair comparison, we do not consider
the constraint (14d) because Zhou’s method cannot handle it.
For Zhou’s method, we make a few modifications to fit into
our application. Firstly, the space of every spot is discretized
by {0.5rad, 0, 5rad, 0.5m} in spherical coordinate system
and the visible points are checked by raycasting. Secondly,
the route is generated and refined by constructing a graph
on visible points by euclidean distance instead of the path
length searched by A*, for the reason of saving computation
time.

The Table I shows the statistic on the trajectory quality.
The visible capability refers to the ratio of observed spots.
Owing to the SCP and the corresponding constraint formula-
tion, our method can guarantee the visibility of all the spots,
while Zhou’s method loses many hits for them. In addition,
our method is more smooth and energy-efficient, indicated by



Fig. 5. Comparison of the generated trajectory. The red ball is the sensible
region for each spot. The trajectory planned by Zhou’s method failed to
inspect the left bottom spot.

the criterion of Int(J2) (time integral of squared jerk). This
primarily benefits from the powerful trajectory optimization
framework [5]. The optimized trajectory duration is higher
than Zhou’s but still comparable to it. Without the hard
visibility constraint, Zhou’s method tends to reduce the
length of trajectory, which will reduce the execution time,
as is shown in Figure 5.
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Fig. 6. Benchmark comparison of the computational time for different
scales (The ESDF construction time is not counted in Zhou’s). Both the
trajectory optimization and the pipeline time are evaluated. The shaded area
is the 4/5σ interval, where σ is the standard deviation.

The comparison of the computational time is shown in
Figure 6. Our method is faster than Zhou’s by orders of
magnitudes and is more reliable. Lacking a compact envi-
ronment abstraction(e.g. SVC), the trajectory optimization
time of Zhou’s takes almost 99% of the whole pipeline. The
proposed method spends about 42% of total time for the
generation of SCPs, route, and SVC, but they highly speed
up trajectory optimization. As the problem scale increase,
our method can still finish in seconds. A more large scale
test of the proposed method is shown in Figure 4.

B. Real-World Experiment

We conduct real-world indoor experiment to validate the
proposed method, as is shown in Figure 7. The upright
cylindrical obstacles are the targets to be inspected. The map
is pre-built using lidar by LIO-SAM [24] and the trajectory is
planned offline. The quadrotor we used is equipped with an

Fig. 7. Real world scene to test the proposed method. The color map
indicate the velocity of the quadrotor.

Intel Realsense D435 for state estimation and Insta 360 One
X21 for omnidirectional perception. The maximum velocity
and acceleration are set as 1.5m/s and 1.0m/s2. The
minimum inspection time for each object is set as 1.0s.

The test environment and the associate results are dis-
played in Figure 7. The quadrotor is able to inspect all the
targets. Since the quadrotor is not necessary to be closest
to the targts as log as they are visible, it decrease speed
and inspect the target throught the gap. The test show that
the SCP can excavates almost all of the visible region and
the formulated star-convex constrained optimization renders
more reasonable trajectory for visibility planning.

VII. CONCLUSION

In this paper, we introduce a compact and efficient space
representation the SCP and propose to formulate the visibil-
ity constraint for star-convex constrained optimization. By
utilizing the SCP, we design a visibility guaranteed planning
framework, while retains the safety, feasibility, and energy
efficiency of trajectory. The experimental results show that
the method is efficient, scalable, and visibility guaranteed.

The main limitation of our method the omnidirectional
perception assumption of the sensor model. In the future,
we will take limited FOV of sensors into consideration and
plan the yaw angle in trajectory optimization.

1https://www.insta360.com/



REFERENCES

[1] R. Bonatti, Y. Zhang, S. Choudhury, W. Wang, and S. Scherer,
“Autonomous drone cinematographer: Using artistic principles to
create smooth, safe, occlusion-free trajectories for aerial filming,” in
International Symposium on Experimental Robotics. Springer, 2018,
pp. 119–129. I

[2] Q. Wang, Y. Gao, J. Ji, C. Xu, and F. Gao, “Visibility-aware trajec-
tory optimization with application to aerial tracking,” arXiv preprint
arXiv:2103.06742, 2021. I, II-A

[3] B. Jeon, Y. Lee, and H. J. Kim, “Integrated motion planner for real-
time aerial videography with a drone in a dense environment,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 1243–1249. I, II-A

[4] Z. Zhang and D. Scaramuzza, “Perception-aware receding horizon
navigation for mavs,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 2534–2541. I

[5] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically con-
strained trajectory optimization for multicopters,” arXiv preprint
arXiv:2103.00190, 2021. I, II-B, V-C, V-C, VI-A

[6] B. F. Jeon and H. J. Kim, “Online trajectory generation of a mav for
chasing a moving target in 3d dense environments,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 1115–1121. II-A

[7] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transac-
tions on Robotics, 2021. II-A

[8] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “Fuel: Fast uav exploration
using incremental frontier structure and hierarchical planning,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 779–786, 2021.
II-A, V-A, VI-A

[9] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and
E. Galceran, “Continuous-time trajectory optimization for online uav
replanning,” in 2016 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE, 2016, pp. 5332–5339. II-B

[10] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.
II-B

[11] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 478–485, 2020. II-B

[12] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference
on robotics and automation. IEEE, 2011, pp. 2520–2525. II-B

[13] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1688–1695,
2017. II-B

[14] Z. Wang, X. Zhou, C. Xu, J. Chu, and F. Gao, “Alternating minimiza-
tion based trajectory generation for quadrotor aggressive flight,” IEEE
Robotics and Automation Letters, vol. 5, no. 3, pp. 4836–4843, 2020.
II-B

[15] J. Tordesillas, B. T. Lopez, and J. P. How, “Faster: Fast and safe
trajectory planner for flights in unknown environments,” in 2019
IEEE/RSJ international conference on intelligent robots and systems
(IROS). IEEE, 2019, pp. 1934–1940. II-B

[16] W. Gao, K. Wang, W. Ding, F. Gao, T. Qin, and S. Shen, “Autonomous
aerial robot using dual-fisheye cameras,” Journal of Field Robotics,
vol. 37, no. 4, pp. 497–514, 2020. 1

[17] X. Zhong, Y. Wu, D. Wang, Q. Wang, C. Xu, and F. Gao, “Generating
large convex polytopes directly on point clouds,” arXiv preprint
arXiv:2010.08744, 2020. IV, V-B

[18] S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” in ACM
SIGGRAPH 2007 papers, 2007, pp. 24–es. IV

[19] S. Katz and A. Tal, “On the visibility of point clouds,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
1350–1358. IV

[20] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Transactions on Mathematical
Software (TOMS), vol. 22, no. 4, pp. 469–483, 1996. IV-A

[21] M. Lutz and T. Meurer, “Efficient formulation of collision avoidance
constraints in optimization based trajectory planning and control,”
arXiv preprint arXiv:2104.12641, 2021. IV-B

[22] K. Helsgaun, “An effective implementation of the lin–kernighan trav-
eling salesman heuristic,” European journal of operational research,
vol. 126, no. 1, pp. 106–130, 2000. V-A

[23] R. Ashour, T. Taha, F. Mohamed, E. Hableel, Y. A. Kheil, M. Elsalam-
ouny, M. Kadadha, K. Rangan, J. Dias, L. Seneviratne, et al., “Site
inspection drone: A solution for inspecting and regulating construction
sites,” in 2016 IEEE 59th International Midwest Symposium on
Circuits and Systems (MWSCAS). IEEE, 2016, pp. 1–4. VI

[24] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 4758–4765. VI-B


