
Whole-Body Real-Time Motion Planning for Multicopters

Shaohui Yang1,2, Botao He1,3, Zhepei Wang1, Chao Xu1,4, and Fei Gao1,4

Abstract— Multicopters are able to perform high maneu-
verability yet their potential have not been fully achieved. In
this work, we propose a full-body, optimization-based motion
planning framework that takes shape and attitude of aerial
robot into consideration such that the aggressiveness of drone
maneuvering improves significantly in cluttered environment.
Our method takes in a series of intersecting polyhedrons that
describe a range of 3D free spaces and outputs a time-indexed
trajectory in real-time with full-body collision-free guarantee.
The drone is modeled as a tilted cuboid, yet we argue that
our framework can be freely adjusted to fit multicopters of
different shapes. Guaranteeing dynamic feasibility and safety
conditions, our framework transforms the original constrained
nonlinear programming problem to an unconstrained one in
higher dimensions which is further solved by quasi-Newton
methods. Benchmark has shown that our method improves the
state-of-art with orders of magnitude in terms of computation
time and memory usage. Simulations and onboard experiments
are carried out as validation.

I. INTRODUCTION

Multicopters are endowed with increasingly diversified
tasks. The list includes searching over highly complicated
unstructured indoor environment with limited free spaces,
crossing over dense, small-scaled, irregularly shaped gaps
and planning on-the-fly like birds to handle unexpected
circumstances. Consequently, unprecedented controllability
over every single point on the drone in real-time is of urgent
need from a realism perspective. The main objective of this
paper is to provide a solution that carries out milliseconds-
level motion planning tasks under tight and rigorous geomet-
rical constraints on entire body of the multicopters.

Nevertheless, the aforementioned demand is still far from
fulfilled. As pointed out by [1], kinodynamic motion plan-
ning considering attitude of multicopters and obstacle avoid-
ance at the same time is a challenging task. A vital reason
is that the contour of a quadrotor along a trajectory is non-
convex as shown in Fig 1. Optimization problems with non-
convex constraints may have several feasible regions and
multiple local minimums within each region.

The mainstream work-around is to ignore the orientation
of drones completely by dilating obstacles radically accord-
ing to its largest axis length, which leads to conservative

This work was supported by National Natural Science Foundation of
China under Grant 62003299 and Grant 62088101.

1 State Key Laboratory of Industrial Control Technology, Institute of
Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China.

2 School of Electrical Engineering and Computer Science, KTH Royal
Institute of Technology, SE-100 44 Stockholm, Sweden.

3 School of Automation, Nanjing Institute of Technology, Nanjing
211112, China.

4 Huzhou Institute, Zhejiang University, Huzhou 313000, China.
Email:shaohuiy@kth.se,{cxu,fgaoaa}@zju.edu.cn

Fig. 1. Our method is able to generate highly aggressive trajectory under
hard geometrical constraints such as gap crossing. The purple ellipsoid disks
are simulated drone models at discrete time instants. It is trivial that the
contours of quadrotor along trajectory form a non-convex set.

performance that does not fully exploit free spaces. For ex-
isting works that indeed consider the attitude, optimization-
based methods either formulate the problem on manifolds
residing in high dimensions or make strong but inaccessible
assumptions on the environments. Search-based methods
are applicable to certain resolution and optimality is only
guaranteed in the discretized space. Both methods return
unsatisfying results even at the cost of long computation time
and heavy memory usage.

We are dedicated to constructing a trajectory optimizer
that considers the dynamics and body shape of multicopters
to achieve passable and aggressive maneuvers in complex
environments. The rotation and translation of the rigid body
are deeply coupled given that drones are under-actuated
platforms. This work starts from our earlier optimization-
based trajectory planning approach that takes in a series of
polyhedrons as description of 3D free space and outputs a
dynamically feasible trajectory inside them. We extend it by
explicitly calculating the robot attitude along the trajectory
and constructing a penalty term as part of objective function.

Building on our previous work [2], this work con-
tributes to the following point: A milliseconds-level full-body
optimization-based trajectory planning algorithm is proposed
with collision-free and dynamic feasibility guarantee. To the
best of our knowledge, this is the first method that generate
trajectory satisfying all aforementioned constraints in real-
time.

II. RELATED WORK

Whole-body motion planning has been broadly studied on
humanoids [6] and legged robots [7], but it is a new topic



for multicopters. Here, we manually divide motion planning
task for multicopters into two steps: front-end and back-end.

The front-end is about properly finding and describing free
spaces. Several works have concluded that a series of convex
polyhedrons is suitable for the task. In [3], polyhedrons are
generated by a teach-repeat framework that captures user’s
intention. Recent work [4] builds polytopes directly from
point clouds in milliseconds. Safe flight corridors are created
by inflating the input path first to an ellipsoid then to a
polyhedron in [5]. The last one will be used in this work.

Back-end is typically achieved in two ways: either dy-
namically adjusting the platform shape according to the
environment, or optimizing / searching a passable trajectory
under constraining obstacles and fixed model shape.

The foldable drone by Falanga et al. [8] represents the
first type. Extra degrees of freedom provided by servos en-
able morphology modification for irregular space passablity.
However, tilting a fixed drone like a bird rather than exploring
hard-to-maintain mechanisms is our main focus.

Some optimization-based methods start with strong as-
sumptions on geometrical constraints. Aggressive gap cross-
ing is achieved in rectangle ones with negligible thickness
and absolute knowledge of them in [9]. The assumption is
eased by [10] such that onboard gap detection is possible.
In [11], similar assumption still holds yet the optimizer
is replaced by reinforcement learning technique. All these
works are designated for single gap crossing only, with no
capability of handling non-gap shaped free spaces.

Other optimization methods happen directly on manifolds.
Watterson et al. [12] proposes a parameterization invariant
manifold trajectory optimization algorithm respecting con-
straints by safe corridor on manifolds. It demonstrates appli-
cation on SO(3) yet concludes nothing about resource usage
and comparison with other works. Meanwhile, manifolds are
parameter-heavy thus when computing the Hessian, the curse
of dimensionality befalls.

A search-based motion planning framework considering
the drone’s attitude and shape is proposed by Liu et al. [13].
Constant control inputs are applied for a fixed duration
∆t to generate motion primitives, followed by a feasibility
checker to filter the safe ones that have no intersections with
the given point cloud. Adaptive dimensionality scheme is
used to accelerate motion planning. However, the framework
has following problems: 1. No smart way of generating
motion primitives, causing numerous useless explorations;
2. Range and step of control inputs require fine-tuning; 3.
The fixed control resolution makes the generation of smooth
and flexible trajectories intractable.

III. PRELIMINARIES

A. Generation of Body Attitude from Differential Flatness

The most straightforward way to consider the drone’s
attitude Rb in trajectory optimization is to figure out its
functional form. Fortunately, leveraging results by Mellinger
et al. [14], the orientation Rb = [r1b, r2b, r3b] ∈ SO(3)
can be written as an algebraic function of four differentially
flat outputs, namely σ = [px, py, pz, ψ]T where p =

Fig. 2. World frame rw , intermediate frame ri and body frame rb.

[px, py, pz]
T represents the coordinate of drone center of

mass (CoM) and ψ is the yaw angle. Instead of going over
all details of deriving Rb(σ), we simply state that:

Rb(σ) =
[
r1b(σ) r2b(σ) r3b(σ)

]
(1)

and that the three axis are defined in (4),(3),(2) respectively.

r3b :=
t

A
(2a)

t := [p̈x, p̈y, p̈z + g]T, A :=
√
p̈x

2 + p̈y
2 + (p̈z + g)2 (2b)

r2b :=
k

B
(3a)

k := [−(p̈z + g) sinψ, (p̈z + g) cosψ, p̈x sinψ − p̈y cosψ]T

(3b)
B :=

√
(p̈z + g)2 + (p̈x sinψ − p̈y cosψ)2 (3c)

r1b = r2b × r3b :=
s

AB
(4a)

s :=

(p̈z + g)2 cosψ + p̈y
2 cosψ − p̈xp̈y sin

(p̈z + g)2 sinψ + p̈x
2 sinψ − p̈xp̈y cos

−(p̈z + g)(p̈x cosψ + p̈y sinψ)

 (4b)

It seems unwise to expand Rb(σ) into such detailed expres-
sion at this point. We argue that this property will be used
in a subsequent section.

B. Geometrically Constrained Trajectory Optimization for
Multicopers Framework Revisit

1) Optimality Condition for Unconstrained Problem: The
revisit starts from a multi-segment minimum control effort
problem for a chain of s-integrators:

min
p(t)

∫ tM

t0

u(t)TWu(t)dt (5a)

s.t. u(t) = p(s)(t),∀t ∈ [t0, tM ] (5b)

p[s−1](t0) = p̄o,p
[s−1](tM ) = p̄f (5c)

p[di−1](ti) = p̄i, 1 ≤ i < M (5d)

with the time duration [t0, tM ] split into M stages by given
timestamps t0 < t1 < · · · < tM . The decision variable



p(t) : [t0, tM ] → Rm is the flat output of system, u
is s-order derivative of p acting as control effort, W is
the given penalty matrix for control variable. p[s−1] =
[pT, ṗT, . . . , (p(s−1))T]T ∈ Rms in (5c) represents the given
initial and final conditions up to order s−1, p[di−1] ∈ Rmdi
in (5d) are the given derivatives of flat output at intermediate
timestamp ti up to order (di − 1) < s.

Theorem 2 (Optimality Condition) in [2] states that the
unique optimal solution to problem (5) p(t) ∈ Rm is a
trajectory composed of M pieces:

p(t) = pi(t− ti−1),∀t ∈ [ti−1, ti) (6)

with the i-th piece profiled by the following polynomial of
degree N = 2s− 1

pi(t) := cT
i β0(t), t ∈ [0, Ti] (7)

β0(t) := [1, t, t2, · · · , tN ]T is the basis time vector, Ti :=
ti − ti−1 is the duration of i-th piece trajectory, ci ∈
R2s×m is a matrix containing the polynomial coefficients.
The uniqueness of solution means that we may directly
enforce optimality conditions on the coefficient matrix c =
[cT

1 , . . . , c
T
M ]T ∈ R2Ms×m, a concatenation of ci.

The optimality condition in Theorem 2 of [2] also states
that the optimal p(t) is d̄i − 1 times continuously differen-
tiable at ti with d̄i = 2s− di, which means

cT
i β

(j)
0 (Ti)− cT

i+1β
(j)
0 (0) = 0m×1, 0 ≤ j ≤ d̄i − 1 (8)

Now all necessary and sufficient conditions imposed on
c are available. We may extract time allocation T =
[T1, . . . , TM ]T and start / intermediate / end points derivative
specifications q = [p̄o, p̄1, . . . , p̄M−1, p̄f ] from problem
(5), construct matrices M(T ) ∈ R2Ms×2Ms and b(q) ∈
R2Ms×m such that

M(T )c = b(q) (9)

Equivalently speaking, (9) is a simple concatenation of
(5c),(5d) and (8).

The above procedure describes how to find the optimal M -
stage trajectory parameterized by c given q and T . However,
our interest lies in finding the optimal intermediate points q∗

and time allocation T ∗ that leads to minimum H(q,T ):

min
q,T

H(q,T ) (10a)

s.t. certain constraints (10b)

where H(q,T ) := F (c(q,T ),T ) and F (c,T ) is user-
defined the control effort of a piecewise polynomial with
parameters c and T . Here, we view c(q,T ) as a function of
given pair (q,T ). [2] also shows that given ∂F

∂q , ∂F
∂c , both

∂H
∂q and ∂H

∂T can be obtained within O(M) time and space
complexity. Later section will show usage of this property.

2) Geometrically Constrained Optimization: The general
form of problem that [2] aims at is:

min
p(t),T

∫ T

0

u(t)TWu(t)dt+ ρ(T ) (11a)

s.t. u(t) = p(s)(t),∀t ∈ [0, T ] (11b)

G(p(t), . . . ,p(s)(t)) � 0,∀t ∈ [0, T ] (11c)

p(t) ∈ F ,∀t ∈ [0, T ] (11d)

p[s−1](0) = p̄o,p
[s−1](T ) = p̄f (11e)

where T is the total time, p(t), u, W , p[s−1] are defined
similarly as (5), ρ(·) is the time regularization function, G
represents nonlinear inequalities, F represents the obstacle-
free region in the configuration space.

In our settings, p(t) ∈ R3 (thus m = 3) is part of σ and
we ignore the yaw angle from now on by setting ψ = 0.
The obstacle-free region (also known as flight corridor) is
approximated with M polyhedrons in H-representation that
are assumed to be consecutively intersected:

F =
M⋃
i=1

PHi ⊂ R3 (12a)

PHi = {x ∈ R3|Aix � bi} (12b){
PHi ∩ PHj = ∅ if|i− j| > 1

PHi ∩ PHj 6= ∅ if|i− j| ≤ 1
(12c)

Leveraging the deduction about optimality conditions in
III-B.1, (11) is equivalent to the following problem that
shares similar structure with (10):

min
q,T

Jq(q,T ) + ρ(‖T ‖1) (13a)

s.t. T � 0 (13b)
p(t) ∈ F ,∀t ∈ [t0, tM ] (13c)

G(p(t), . . . ,p(s)(t)) � 0,∀t ∈ [t0, tM ] (13d)

where p(t) comes from (7) and can thus be regarded as
p(q,T )(t) and Jq(q,T ) := Jc(c(q,T ),T ) corresponds to
the integral of control efforts

∫
uTWu.

We solve (13) by eliminating the constraints and doing
unconstrained optimization using quasi-Newton method. For
temporal and spatial constraints in (13b) and (13c), we
propose a diffeomorphism based method to eliminate them in
[2]. We write T = T (τ ) and q = q(ξ) such that τ and ξ are
unconstrained variables with higher dimension. For general
nonlinear constraints in (13d), we add its discretized version
to the objective function in (13a) as penalizing term.

However, it is critical to note that by enforcing (13c), we
only guarantee that the drone CoM is within the obstacle-
free area along the trajectory rather than the entire body
of the drone because we do not take the drone’s attitude
and shape into account. To overcome that, we formulate a
series of nonlinear constraints Gatt(p(t), p̈(t)) � 0 in the
next section.

IV. FULL-BODY MOTION PLANNING

In this section, we first show an efficient way of modeling
the shape of the drone and specify the full-body collision-
free conditions explicitly with the given free spaces (12).
Then, we further formulate it into nonlinear constraints Gatt
and soften it with the time integral penalty with fixed relative
resolution. Finally, we derive the derivatives of the penalty
term to add it up to the overall optimization framework.



A. Quadrotor Modeling and Trajectory within Polyhedrons

The H-representation of M closed convex polyhedrons in
(12b) can be alternatively written as: ∀i ∈ {1, 2, . . . ,M}

PHi = {q ∈ R3|(nki )T(q − oki ) ≤ 0, k = 1, . . . ,Ki} (14)

with each polyhedron PHi composed of Ki hyperplanes
and each hyperplane characterized with normal vector nki
pointing inwards and one point oki on the plane.

To achieve full-body obstacle avoidance, we would like the
inequality (14) to always hold for arbitrary point q ∈ Qi(t)

Qi(t) = {q|q = qoi (t) + pi(t)}
∀t ∈ [0, Ti],∀i ∈ {1, 2, . . . ,M}

(15)

where pi(t) is the drone CoM position along the i-th
trajectory and qoi (t) is the offset from any point on the drone
from CoM, both in world coordinate. Non-convex set Qi(t)
can be interpreted as a continuous union of all points on the
drone moving along the i-th trajectory, or an inflation of i-th
trajectory according to the drone model.

qoi (t) =
[
ri1b ri2b ri3b

] [
q̃x q̃y q̃z

]T
= Ri

b(t)q̃

∀t ∈ [0, Ti], ∀i ∈ {1, 2, . . . ,M}
(16)

with carefully selected q̃ = [q̃x, q̃y, q̃z]
T ∈ Q̃. Ri

b(t) is the
rotation matrix in (1) for i-th piece. Modeling of the drone
determines Q̃. Here we list two examples but we argue that
this constant set Q̃ may vary in a great range and only
depends on the shape of certain multicopters.

In [13], the drone is modeled as an ellipsoid (See Fig. 3)
with radius r and height h:

Q̃ellip = {Eq̃n|‖q̃n‖ ≤ 1} E := diag(r, r, h) ∈ R3×3

(17)
Though the above ellipsoid description is closer to the

actual shape of a drone, it suffers from the drawback that
there are infinitely many points to check. As a workaround,
the drone is modeled as cuboid with half length and width
= r and half height = h as shown in Fig. 3 such that only
eight vertices are to be considered:

Q̃cub = {q̃v =
[
±r ±r ±h

]T
, v = 1, 2, . . . , 8} (18)

Fig. 3. Ellipsoid (left) and cuboid (right) model of drone. If height h is
measured from CoM that does not lie on the plane formed by propellers,
ellipsoid in red might not fully contain the drone. Cuboid model does not
have this concern.

Thus, one way of constructing nonlinear constraints to
achieve full-body collision-free is to combine (12b), (15) and
(18):

Gvatt(pi(t), p̈i(t)) = Ai(pi(t)+Ri
b(t)q̃v)−bi ∈ RKi (19a)

Gatt(pi(t), p̈i(t)) =
[
[Gvatt(pi(t), p̈i(t))T]8v=1

]T
∈ R8Ki

(19b)
Note that in (19), Gatt(pi(t), p̈i(t)) = Gatt(ci, Ti) is

constructed such that the inflation of i-th trajectory is
completely within the i-th polyhedron, or simply Qi(t) ⊂
PHi ,∀t ∈ [0, Ti]. This is one reasonable way of construction,
yet it might lead to conservative optimization results since
in the intersection of two polyhedrons, the inflated drone
trajectory set does not necessarily stay within either one. A
perfect solution to such problem will lead to a mixed-integer
optimization, which is too costly for online computation. As
will be shown in the experiments part, this does not matter
much in practice.

B. Construction of Constraint Violation Function

Since it is troublesome and intractable to directly handle
the nonlinear constraints Gatt(pi(t), p̈i(t)), as suggested by
[2], we only consider the potential violation happens at
normalized timestamps and construct the constraint violation
function Gatt : R2s×3×R+×[0, 1]→ R8Ki at the normalized
timestamp t̂ ∈ [0, 1] as:

Gkatt(ci, Ti, t̂) =
[
(nki )T(pi(t̂·Ti)+Ri

b(t̂·Ti)q̃v−oki )
]8
v=1
∈ R8

(20a)

Gatt(ci, Ti, t̂) =
[
[Gkatt(ci, Ti, t̂)T]Ki

k=1

]T
∈ R8Ki (20b)

Note that (19) and (20) have same content but different
appearance. The reason of writing the function in (20a) form
is for easier gradient derivation in later subsection.

Provided with a constant weight vector χ ∈ R8Ki , the
time integral penalty function over pi(t), denoted by Iatt :
R2s×3×R+×Z≥ → R+ is given by the quadrature of cubic
penalty over [0, Ti]:

Iatt(ci, Ti, κi) =
Ti
κi

κi∑
j=1

ωjχ
T max[Gatt(ci, Ti,

j

κi
),0]3

(21)
where max[·,0]3 is a composite function of entry-wise max-
imum and entry-wise cubic function. The pre-given constant
1
κi

is the relative resolution of the quadrature. The constant
scalar ωj is the j-th quadrature coefficient.

The penalty term along the entire trajectory is given by

IΣatt(c,T ) =
M∑
i=1

Iatt(ci, Ti, κi) (22)

and as mentioned in III-B.2. It is added directly to the
objective function. Thus the problem defined in (13) has no
constraints and any unconstrained optimization methods can
be applied.

C. Derivation of Derivatives of Attitude Penalty

Now that the function Iatt(ci, Ti, κi) is a part of the
overall objective function and ci and Ti are the variables
to be optimized, it is necessary to compute the derivative
∂Iatt

∂ci
and ∂Iatt

∂Ti
. Gk,vatt is the v-th component of vector Gkatt.

Due to the limitation on pages, we leave the hardest parts of
deriving ∂Gk,v

att

∂ci
and ∂Gk,v

att

∂Ti
with fixed q̃v ∈ Q̃cub in [15].



It is easy to concatenate the derivative of Gk,vatt with
different k, v together to attain ∂IΣatt

∂c and ∂IΣatt

∂T and further
use them in unconstrained optimization methods.

D. Unifying the Framework

In earlier sections, we finish constructing the substitution
IΣatt(c,T ) and its derivatives for collision-free nonlinear
constraints Gatt in problem (13). However, a drone is not
able to fly as aggressively as we desire due to the limitations
on propeller thrust and difficulties on controllers. This is
typically known as the dynamic feasibility constraints which
can be equivalently transferred to maximum velocity and
acceleration bounds in general. Since highly tiltedness of
drone is expected in our method, including a jerk bound
is also necessary. All these nonlinear constraints Gdyn are
approximated by IΣdyn(c,T ) in a similar way.

We must point out that an approximation has been made
by replacing Gatt,Gdyn with IΣatt, IΣdyn. Violation of non-
linear constraints may happen due to the finite resolution of
approximation. However, later experiments proves that this
does not affect the overall quality of the final trajectory.

After adding the discretized penalty terms IΣatt(c,T ) and
IΣdyn(c,T ) into the objective function (13a) and bypassing
temporal and spatial constraints via diffeomorphism based
methods, the optimization problem in (13) is purely uncon-
strained. During the process, we use cddlib [16] to transform
polyhedrons between H-representation and V-representation
[17]. We use a customized LBFGS [18] optimizer1 to solve
the problem in a quasi-Newton fashion with low computa-
tional burden but at the cost of being potentially trapped by
local minimums.

V. RESULTS

A. Benchmark for Full-Body Motion Planning

Since there is no available optimization-based full-body
motion planning framework, we benchmark our solution
with the state-of-the-art search-based method by [13]2. Both
methods accept a point cloud, start and goal states as well as
dynamic constraints. Theoretically speaking, constant control
should be applied in 3D for primitive generation, yet Liu’s
method [13] suffers from the curse of dimensionality heavily
so it only generates motion primitives on x-y plane with
fixed z-axis value. Such distinction is intuitive in Fig. 4(b).
It also needs the user-defined searching range, which is
manually adjusted to fit for respective starters and endings
in latter benchmarks. Constant control resolution makes no
guarantee that the desired final state can be reached exactly
so a tolerance must be set. Fig. 4(c) exposes this drawback.

Our method generates a series of polyhedrons along a
A* path and solves an unconstrained optimization problem
as described in section III and IV. An overall graphical
comparison is shown in Fig. 4(a).

As for detailed benchmarking, the same point cloud map
and drone with r = 0.5 m, h = 0.1 m is used. Table I

1https://github.com/ZJU-FAST-Lab/LBFGS-Lite
2https://github.com/sikang/mpl_ros

(a) Overview Comparison.

(b) 3D trajectory v.s. 2D trajectory.

(c) Ending Status.

Fig. 4. Left: Our method. Right: Liu’s method [13]. Fig. 4(a) shows our
smooth solution is contained in polyhedrons. Meanwhile, there are unused
expanded states shown as red squares in Liu’s work [13]. Fig. 4(b) shows
that our solution fully exploits the 3D free spaces while Liu’s solution is
only limited to fixed height in 2D. Fig. 4(c) shows that drone reaches steady
state eventually in our method while Liu’s method [13] makes no guarantee
about the final state, i.e., it might not be hovering.

summarizes the parameters for both methods. ρ is the time
penalizing term. Different ρ are used to achieve the best
collision avoidance result in two methods. v̄, ā and j̄ are the
boundings of respective physical quantity. For Liu’s method
[13], ū is the maximum jerk input, du is the stepping of input
and τ is the constant input duration for single primitive. All
of them are identical as in [13]. For our method, χatt and κatt
appear in (21).χatt is the penalty weight. κatt is the relative
resolution or number of samples for penalty per pieces. Due
to limited pages, only parameters related to full-body motion
planning are listed. All comparisons are conducted under
Linux environment on an Intel Core i7-10750H CPU.

The benchmark results are shown in Table II. Bold quanti-
ties stands for better physical meaning, i.e., shorter time, less



TABLE I
1ST ROW: OUR METHOD, 2ND ROW: LIU’S METHOD [13]

ρ χatt v̄ ā j̄ κatt
1024 60000 10 m/s 10 m/s2 60 m/s3 16
ρ τ v̄ ā ū du

10000 0.2 s 10 m/s 10 m/s2 60 m/s3 30 m/s3

memory or faster speed. Npoly is the number of polyhedron
corridors, which roughly reflects the flight distance. Tcpu is
the CPU time for executing respective programs. Memory
usage comes from System Monitor. Tall is the trajectory
execution time. The computation time of A* path in our
method is NOT included. vmax and amax are the maximum
velocity and acceleration along the trajectory. Our amax
may violate the bound slightly as been explained in IV-D.
Our method has demonstrated superior advantages in time
consumption and memory usage over Liu’s method [13] by
orders of magnitude while returning trajectories that fully
leverage the dynamical feasibility bounds such that highly
aggressive maneuvers are possible. This superiority increases
as the problem size becomes larger because the LBFGS
optimizer usually occupies same amount of memory and
consumes linearly increasing time. In Liu’s method [13]
however, both numbers grow exponentially. Since there is
no universal rule of quantifying how successful a trajectory
is regarding to obstacle avoidance, we do not include such
comparisons and leave the readers to see graphically whether
the full-body motion planning is of success.

TABLE II
1ST ROW: OUR METHOD, 2ND ROW: LIU’S METHOD [13]

Npoly Tcpu Memory Tall vmax amax

7 45.35ms 52.7MB 4.41 s 5.67 m/s 10.02m/s2

2000 ms 194.7 MB 4.40 s 6.46m/s 8.49 m/s2

10 62.58ms 52.6MB 5.78 s 7.59m/s 10.02m/s2

1774 ms 173.0 MB 5.80 s 7.23 m/s 8.49 m/s2

16 89.39ms 52.6MB 8.81 s 8.96m/s 10.03m/s2

38 667 ms 986.5 MB 9.60 s 8.65 m/s 8.49 m/s2

20 64.01ms 52.7MB 10.07 s 8.98m/s 10.25m/s2

119 912 ms 3276.8 MB 10.80 s 8.10 m/s 8.49 m/s2

B. Aggressive Flight Experiments

Real world experiments (success rate 100%) have been
conducted as executablity proof for the generated trajectory
on drones. We self-assemble a lightweight platform with
diameter 214 mm, height 62 mm and weight 190 g to demon-
strate high aggressiveness. An external VICON motion cap-
ture system is used to obtain position and orientation of the
drone. The convex polyhedron series that form the flight
corridor is generated in advance. PixRacer flight controller
is deployed onboard. We set up a ground station receiving
the attitude information from VICON, generating trajectory
in milliseconds and sending the desired commands to the
PixRacer via Wi-Fi.

The experiment consists in crossing a narrow gap with
width up to l = 170 mm as shown in Fig. 5. We set v̄ =
4.0 m/s, ā = 8.5 m/s2, ρ = 1024. More details can be found
in the attachedd video3.

3https://www.youtube.com/watch?v=tkhN6Xrxluk

(a) Sequential Instants.

(b) Left: Trajectory Generated; Right: Crossing Instant.

(c) Velocity and Acceleration along Time.

Fig. 5. Details of aggressive gap crossing. Fig. 5(a) and Fig. 5(b) shows
the environment setup and drone status. Fig. 5(c) provides velocity and
acceleration profiles. The trajectory fully exploits the dynamic feasibility
constraints with no violation.

VI. CONCLUSION

In this work, we build on our previous geometrically
constrained motion planning framework [2] to achieve online
full-body optimization-based trajectory generation within a
series of polyhedrons. It is thus theoretically possible to
integrate the entire pipeline – generation of polyhedron
from depth sensor [4], optimization in full-body fashion
with onboard computer (this work) and feedback with state
estimation results [19] on flight controller – to a uniformed
compact platform. This will be our future work. Meanwhile,
we are also working on optimization under non-convex or
manifold-typed geometric constraints while preserving the
advantage of little resource usage.



REFERENCES

[1] J. Canny, B. R. Donald, J. Reif, and P. G. Xavier, “On the complexity
of kinodynamic planning,” Cornell University, Tech. Rep., 1988.

[2] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically con-
strained trajectory optimization for multicopters,” arXiv preprint
arXiv:2103.00190, 2021.

[3] F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen, “Teach-
repeat-replan: A complete and robust system for aggressive flight in
complex environments,” IEEE Transactions on Robotics, 2020.

[4] X. Zhong, Y. Wu, D. Wang, Q. Wang, C. Xu, and F. Gao, “Generating
large convex polytopes directly on point clouds,” arXiv preprint
arXiv:2010.08744, 2020.

[5] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1688–1695,
2017.

[6] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taı̈x, and J.-
P. Laumond, “Dynamic walking and whole-body motion planning for
humanoid robots: an integrated approach,” The International Journal
of Robotics Research, vol. 32, no. 9-10, pp. 1089–1103, 2013.

[7] H. Li and P. M. Wensing, “Hybrid systems differential dynamic
programming for whole-body motion planning of legged robots,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 5448–5455, 2020.

[8] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza,
“The foldable drone: A morphing quadrotor that can squeeze and fly,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 209–216,
2018.

[9] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation,
control, and planning for aggressive flight with a small quadrotor with
a single camera and imu,” IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 404–411, 2016.

[10] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggres-
sive quadrotor flight through narrow gaps with onboard sensing and
computing using active vision,” in 2017 IEEE international conference
on robotics and automation (ICRA). IEEE, 2017, pp. 5774–5781.

[11] J. Lin, L. Wang, F. Gao, S. Shen, and F. Zhang, “Flying through a
narrow gap using neural network: an end-to-end planning and control
approach,” arXiv preprint arXiv:1903.09088, 2019.

[12] M. Watterson, S. Liu, K. Sun, T. Smith, and V. Kumar, “Trajectory
optimization on manifolds with applications to quadrotor systems,”
The International Journal of Robotics Research, vol. 39, no. 2-3, pp.
303–320, 2020.

[13] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion
planning for aggressive flight in se (3),” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 3, pp. 2439–2446, 2018.

[14] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference
on robotics and automation. IEEE, 2011, pp. 2520–2525.

[15] S. Yang, B. He, C. Xu, and F. Gao. Detailed derivations of
whole-body motion planning for micro aerial vehicles. [Online].
Available: https://syangav.github.io/publication/ICRA2021 addon

[16] K. Fukuda, “Cddlib reference manual,” Report version 093a, McGill
University, Montréal, Quebec, Canada, 2003.

[17] K. Fukuda et al., “Frequently asked questions in polyhedral compu-
tation.”

[18] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[19] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.


	0700_FI.pdf

